欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年江苏省扬州市中考数学试卷(解析版).pdf

    • 资源ID:88103019       资源大小:3.37MB        全文页数:30页
    • 资源格式: PDF        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年江苏省扬州市中考数学试卷(解析版).pdf

    2022年江苏省扬州市中考数学试卷一、选 择 题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.(3 分)实数-2 的相反数是()A.2 B.-A C.-2 D.A2 22.(3 分)在平面直角坐标系中,点 P(-3,/+1)所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(3 分)孙子算经是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x 只,兔有y 只,那么可列方程组为()人 x+y=3 5,口 f x+y=3 5,A.JB 44 x+4 y=9 4 4 x+2 y=9 4 f x+y=9 4,f x+y=3 5,2 x+4 y=3 5 (2 x+4 y=9 44.(3 分)下列成语所描述的事件属于不可能事件的是()A.水落石出 B.水涨船高 C.水滴石穿 D.水中捞月5.(3 分)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱 B.四棱锥 C.三棱柱 D.三棱锥6.(3 分)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为A 8 C,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,Z B C.AB,AC,Z B D.N A,ZB,BC7.(3分)如图,在 A B C中,A B A C,将 A B C以点A为中心逆时针旋转得到A O E,点。在3 c边上,D E交A C于点F.下列结论:A F E s )/,其中所有正确结论的序号是()A.B.C.D.8.(3分)某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()oxA.甲 B.乙 C.丙 D.丁二、填 空 题(本大题共有10小题,每小题3分,共3 0分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)扬州某日的最高气温为6 C,最低气温为-2 C,则该日的日温差是.1 0.(3分)若G T在实数范围内有意义,则x的 取 值 范 围 是.1 1.(3分)分解因式:3m2-3=.1 2.(3分)请填写一个常数,使得关于x的方程/-2 x+=0有两个不相等的实数根.1 3.(3分)如图,函数(0)的图像经过点尸,则关于x的不等式近+3的解集为根据里氏震级的定义,地震所释放出的能量E与震级n的关系为E=k X 1015(其中人为大于0 的常数),那么震级为8 级的地震所释放的能量是震级为6 级的地震所释放能量的.倍.15.(3 分)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、则或“=”)17.(3 分)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片A 8 C,第 1次折叠使点8 落在8 c 边 上 的 点 处,折痕AO交 8 C 于点/);第 2 次折叠使点A 落在点。处,折痕交 A B 于点P.若 B C=1 2,则 MP+MN=(第 I 次折叠)(第2 次 折 叠)1 8.(3分)在 ABC中,Z C=9 0 ,小b、c 分别为乙4、NB、NC 的对边,若序=a c,则 si n A的值为.三、解 答 题(本大题共有1 0小题,共9 6分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)1 9.(8分)计算:(1)2 cos4 5 +(T C-代)-弧;(2)(一2 _+1)+2 m+2m-1 m2-2m+lx-242x,2 0.(8分)解不等式组,2x 并求出它的所有整数解的和.2 1.(8分)某校初一年级有6 0 0 名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)4调查组从初一体育社团中随机抽取20 名男生进行引体向上测试,B调查组从初一所有男生中随机抽取2 0 名男生进行引体向上测试,其中 (填“4”或B”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:这组测试成绩的平均数为 个,中位数为 个;成绩/个23457131415人数/人11185121(3)若 以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.22.(8分)某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1 个白球和2 个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个 球(不放回),再从余下的2 个球中任意摸出1 个球.(1)用树状图列出所有等可能出现的结果:(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.23.(10分)某中学为准备十四岁青春仪式,原计划由八年级(1)班 的4个小组制作3 6 0面彩旗,后 因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?24.(10分)如图,在。A B C C中,BE、G分别平分/A B C、Z A D C,交 A C 于点E、G.(1)求证:BE/DG,B E=D G;(2)过点E作E F L A B,垂足为F.若的周长为5 6,E F=6,求 A B C的面积.B25.(10分)如图,A B为OO的弦,0 c _L O A交A B于 点P,交过点B的直线于点C,且CB=CP.(1)试判断直线B C与。0的位置关系,并说明理由;(2)若 s i n 4=近,。4=8,求 C B 的长.5C B26.(10分)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如 图1,已知扇形O A 8,请你用圆规和无刻度的直尺过圆心。作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段M N,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形M N P;【问题再解】如图3,已知扇形0 A B,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)图1图2图32 7.(1 2 分)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘A 8在 x 轴上,且 A B=8 而?,外轮廓线是抛物线的一部分,对称轴为y轴,高度。C=8 而?.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;点 8运 动(不与点8、C重合),过点。作 EJ_ A。,交射线AB于点E.(1)分别探索以下两种特殊情形时线段AE 与 BE 的数量关系,并说明理由:点E在线段A B的延长线上且B E=B D;点E在线段A B上且EB=ED.(2)若 A 8=6.当 班=近 时,求 AE 的长;A D 2直接写出运动过程中线段A E长度的最小值.2022年江苏省扬州市中考数学试卷参考答案与试题解析一、选 择 题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1 .(3分)实数-2的相反数是()A.2 B.-A C.-2 D.A2 2【分析】直接利用相反数的定义得出答案.【解答】解:实数-2的相反数是2.故选:A.【点评】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.(3分)在平面直角坐标系中,点P (-3,a2+l)所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据平方数非负数判断出点P的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:,/(),:.a2+l,.点P (-3,/+)所在的象限是第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.(3分)孙子算经是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x只,兔有y只,那么可列方程组为().f x+y=3 5,口 f x y=3 5,4 x+4 y=9 4 (4 x+2 y=9 4c f x+y=9 4,c f x+y=3 5,_ z.4D .42 x+4 y=3 5 2 x+4 y=9 4【分析】关系式为:鸡的只数+兔的只数=35;2X 鸡的只数+4义兔的只数=9 4,把相关数值代入即可求解.【解答】解:设鸡有x 只,兔有y 只,可列方程组为:(x+y=35I2x+4y=94故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到鸡和兔的总只数及鸡和兔的脚的总只数的等量关系.4.(3 分)下列成语所描述的事件属于不可能事件的是()A.水落石出 B.水涨船高 C.水滴石穿 D.水中捞月【分析】根据事件发生的可能性大小判断.【解答】解:A、水落石出,是必然事件,不符合题意;8、水涨船高,是必然事件,不符合题意;C、水滴石穿,是必然事件,不符合题意;。、水中捞月,是不可能事件,符合题意;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3 分)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱 B.四棱锥 C.三棱柱【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥,故选:B.D.三棱锥【点评】本题主要考查由三视图判断几何体的形状,掌握常见几何体的三视图是解题的关键.6.(3分)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为A 8C,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,NB C.AB,AC,NB D.ZA,ZB,BC【分析】直接利用全等三角形的判定方法分析得出答案.【解答】解:4利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,N B,无法确定三角形的形状,故此选项符合题意;D.根据NA,NB,B C,三角形形状确定,故此选项不合题意;故选:C.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.7.(3分)如图,在A8C中,AB=N/E,由相似三角形的旋转得出/E 4 E=/C Q F,进而得出/B A D=N C D F,可判断结论符合题意;即可得出答案.【解答】解:I将AABC以点A为中心逆时针旋转得到AOE,A Z B A C=ZDAE,N B=N A D E,AB=AD,N E=N C,;.N B=N A D B,:.Z A D E Z A D B,平分/8OE,符合题意;V Z A F E=ZDFC,Z E=Z C,:.AFES/XQFC,符合题意;Z B A C=A DAE,:.A B A C -Z D A C=Z D A E-ZDAC,:.NBAD=N F A E,:AFEsXDFC,:.Z F A E=Z C D F,:.Z B A D=Z C D F,二符合题意;故选:D.【点评】本题考查了旋转的性质,相似三角形的判定与性质,掌握旋转的性质,相似三角形的判定方法是解决问题的关键.8.(3分)某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()yoxA.甲 B.乙 C.丙 D.丁【分析】根据题意可知孙的值即为该校的优秀人数,再根据图象即可确定丙校的优秀人数最多.【解答】解:根据题意,可知孙的值即为该校的优秀人数,描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,乙、丁两所学校的优秀人数相同,.点丙在反比例函数图象上面,二丙校的x y的值最大,即优秀人数最多,故选:C.【点评】本题考查了反比例函数的图象上点的坐标特征,结合实际含义理解图象上点的坐标含义是解题的关键.二、填 空 题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)扬州某日的最高气温为6 ,最低气温为-2 C,则该日的日温差是 8 .【分析】由最高气温减去最低气温确定出该日的日温差即可.【解答】解:根据题意得:6-(-2)=6+2 =8 (),则该日的日温差是8.故答案为:8.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.1 0.(3分)若 后1在实数范围内有意义,则x的 取 值 范 围 是x笠1 .【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若丁三工在实数范围内有意义,则 x -1 2 0,解得:故答案为:x 2 l.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.1 1.(3 分)分解因式:3。-3=.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=3(Z M2-1 )=3 (m+1)(.in-1).故答案为:3 (加+1)Cm-1).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.1 2.(3分)请填写一个常数,使得关于x的方程7-2 x+0(答案不唯一)=0有两个不相等的实数根.【分析】根据方程的系数结合根的判别式4=-4 c 0,即可得出关于c的不等式,解之即可求出c的值.【解答】解:a=l,h=-2.:A =序-4 a c=(-2)2 -4 X 1 XC O,:.c0时,方程有两个不相等的实数根”是解题的关键.1 3.(3分)如图,函数(%3的解集为 x 3的解集.【解答】解:由图象可得,当 尤=-1时,y=3,该函数y随x的增大而减小,.不等式h+b 3的解集为x -1,故答案为:x.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.(3 分)将一副直角三角板如图放置,已知/E=6 0 ,ZC=45,EF/BC,则NBN【分析】由直角三角形的性质得出/=30,ZB=45,由平行线的性质得出=/F=3 0 ,再由三角形内角和定理即可求出乙8汨的度数.【解答】解:NE=60,ZC=45,/.Z F=30,ZB=45,JEF/BC,:.N N DB=N F=30 ,.N8NO=180-ZB-ZJVDA?=180-45-30=105,故答案为:105.【点评】本题考查了平行线的性质,熟练掌握平行线的性质,直角三角形的性质,三角形内角和定理是解决问题的关键.17.(3 分)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片4 B C,第 1次折叠使点8 落在8 c 边上的点)处,折痕AO交 BC于点Q;第 2 次折叠使点A 落在点。处,折痕交A B 于点P.若 B C=1 2,则M P+M N=6.(第 1次 折 叠)(第2次折叠)【分析】先把图补全,由折叠得:A M=M D,MN L AD,A D LB C,证明GN是aA B C 的中位线,得 G N=6,可得答案.【解答】解:如图2,由折叠得:AM=MDf MNA.AD,ADLBC,(第2次 折 叠):.GNBC,:.AG=BG9 GN是ABC的中位线,:.G N=1.BC=X 12=6,2 2;PM=GM,:.MP+MN=GM+MN=GN=6.故答案为:6.【点评】本题考查了三角形的中位线定理,折叠的性质,把图形补全证明C的中位线是解本题的关键.18.(3 分)在ABC 中,ZC=90,。、b、c 分别为NA、/B、NC 的对边,则 s iM 的值为存1.一 2【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在A3C中,ZC=90,Ac2=tz2+/?2,:f=ac,J.c2=a1+ac,等 式 两 边 同 时 除 以 得:=A+i,a c令包=JG 则有JL=X+1,C X-1 =0,解得:R=近 二 1,X 2=(舍去),2 2/A B C若 tr=ac,s inA 一 1.c 2故答案为:2【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.三、解答题(本大题共有10小题,共 9 6 分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8 分)计 算:(1)2 c os 4 5 +(n-A/3)-(2)+2m+2.m-1 m2-2 m+l【分析】(1)根据特殊角的三角函数值、零指数基、二次根式的性质计算即可;(2)根据分式的混合运算法则计算.【解答】解:(1)原式=2 亚+1 -2 加2=&+1 -2&=1-V 2;2(2)原式=(_ _+J LLJL)-1-m-l m-l 2 (m+1)=m+1.(m-1)2m_l 2(m+1)_ m-l 2,【点评】本题考查的是分式的混合运算、实数的运算,掌握分式的混合运算法则、零指数第、二次根式的性质、熟记特殊角的三角函数值是解题的关键.x-2 4 2 x,2 0.(8 分)解不等式组,i+2 x 并求出它的所有整数解的和.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可求得该不等式组所有整数解的和.fx-2 2 x 解不等式,得:X -2,解不等式,得:x 4,.原不等式组的解集是-2 W x 4,该不等式组的整数解是-2,-1,0,1,2,3,-2+(-1)+0+1+2+3=3,该不等式组所有整数解的和是3.【点评】本题考查一元一次不等式组的整数解、解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.2 1.(8分)某校初一年级有6 00名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)A调查组从初一体育社团中随机抽取2 0名男生进行引体向上测试,B调查组从初一所有男生中随机抽取2 0名男生进行引体向上测试,其中 B(填“A”或B”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:成绩/个23457131415人数/人11185121这组测试成绩的平均数为 7个,中位数为 5个;(3)若 以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.【分析】(1)根据抽样调查的特点解答即可;(2)根据平均数,中位数计算公式解答即可;(3)用样本估计总体的思想解答即可.【解答】解:(I)从初一所有男生中随机抽取2 0名男生进行引体向上测试,收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况,故答案为:B;(2)这组测试成绩的平均数为:J(2 X 1+3 X 1+4 X 1+5 X 8+7 X 5+13 X 1+14 X 2+15 X 1 )20=7 (个),中位数为:5 (个),故答案为:7,5;(3)6 0 0 x 2=9 0 (人),20答:校初一有9 0名男生不能达到合格标准.【点评】本题主要考查的统计相关知识,熟练掌握平均数,中位数的计算,用样本估计总体的思想是解决本题的关键.2 2.(8分)某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个 球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果;(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.【分析】(1)画出树状图即可;(2)由树状图可知,摸出颜色不同的两球的结果有4种,摸出颜色相同的两球的结果有2种,再由概率公式去摸出颜色不同的两球的概率和摸出颜色相同的两球的概率,进而得出结论.【解答】解:(1 )画树状图如下:白红红A A A红 红 白 红 白 红共有6种等可能出现的结果;(2)摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球分别对应的奖次为一等奖,理由如下:由树状图可知,摸出颜色不同的两球的结果有4种,摸出颜色相同的两球的结果有2种,摸出颜色不同的两球的概率为a=2,摸出颜色相同的两球的概率为2=工,6 3 6 3.一等奖的获奖率低于二等奖,1 G 和CBE 中,rZ D A C=Z B C A A D=C B ,,Z A D G=Z C B E:A A D G出4CBE(ASA),:.BE=DG;(2)解:过 E 点作EH_LBC于 H,BE平分/ABC,EFLAB,:.EH=EF=6,.oABCD的周长为56,:.AB+BC=2S,.SAABC=-A-AB-EF-BCEH=/EF(A B+BC)=yX6X28=84.【点评】本题主要考查平行四边形的性质,角平分线的定义与性质,三角形的面积,全等三角形的判定与性质,掌握平行四边形的性质是解题的关键.25.(10分)如 图,A B为。的弦,OCLOA交 A 8 于 点 P,交过点8 的直线于点C,且CB=CP.(1)试判断直线BC与。0 的位置关系,并说明理由;(2)若 114=近_,0 A=8,求 C8的长.5AC B【分析】(1)连 接 O B,由等腰三角形的性质得出/A =NOBA,N C P B=/C B P,结合对顶角的性质得出/A P O=/C B P,由垂直的性质得出乙4+N4PO=90,进而得出/OBA+ZCBP=90,即可得出直线BC与O O 相切;(2)由 sinA=返,设0P=疾x,则 AP=5 x,由 勾 股 定 理 得 出 方 程5(泥x)2+8 2=(5x)2,解方程求出X的值,进而得出尸=遥X =4,再利用勾股定理得出8 c 2+82=(8C+4)2,即可求出C 3 的长.【解答】解:(1)直线5 C 与O O 相切,理由:如图,连接08,:0A=0B,:.Z A=Z 0 B Af:CP=CB,;.NCPB=NCBP,.,/A P 0=N C P B,:.NAP0=NCBP,NA+NAPO=90,/OBA+NC8P=90,;NOBC=90,V O B 为半径,.直线BC与 相 切;(2)在 RtZAO尸中,sinX=_QE_,APsinA=-,5.设 O P=&x,则 AP=5x,:0 户+0A2=A 2 2,(V5X)2+82=(5X)21解得:X=生 区 或-生 5 (不符合题意,舍去),5 5.0 P=V X _ L=4,5VZOBC=90,:.BC1+OB1=OC1,:CP=CB,0B=0A=8,/.BC2+82=(BC+4)2,解得:BC=6,;.C B 的长为6.【点评】本题考查了切线的判定,勾股定理,锐角三角函数的定义,熟练掌握等腰三角形的性质,切线的判定与性质,勾股定理,锐角三角函数的定义,一元二次方程的解法是解决问题的关键.26.(1 0 分)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分己知扇形的面积?【初步尝试】如 图 1,已知扇形O A 8,请你用圆规和无刻度的直尺过圆心O 作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段M N,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形“NP;【问题再解】如图3,已知扇形O A B,请你用圆规和无刻度的直尺作一条以点O 为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)AAO B M N O B图 1图2图3【分析】【初步尝试】如 图 1,作NA08 的角平分线0P即可;【问题联想】如图2,作线段MN的垂直平分线R T,垂足为R,在射线R T 上截取R P=R M,连接M P,NP,三角形MNP即为所求;【问题再解】构造等腰直角三角形O B E,作 B C _ L O E,以。为圆心,O C为半径画弧交。8 于点,弧 C。即为所求.【解答】解:【初步尝试】如 图 1.直线。尸即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,而即为所求.【点评】本题考查作图-复杂作图,等腰直角三角形的性质,扇形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2 7.(1 2 分)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在 x 轴上,且 A B=8 4”,外轮廓线是抛物线的一部分,对称轴为),轴,高度。C=8 力”.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘A8 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3 力力的圆,请说明理由.【分析】(1)先根据题意求出抛物线的解析式,当正方形的两个顶点在抛物线上时正方形面积最大,先根据GH=20G计算,的横坐标,再求出此时正方形的面积即可;(2)由(1)知:设 H(力-1+8)(f 0),表示矩形EFGH的周长,再根据二次函2数的性质求出最值即可;(3)设半径为3d,的圆与AB相切,并与抛物线相交,设交点为N,求出点N 的坐标,并计算点N 是圆M 与抛物线在y 轴右侧的切点即可.【解答】解:(1)如 图 1,由题意得:A(-4,0),B(4,0),C(0,8),把 B(4,0)代入得:0=164+8,.a=-A,2抛物线的解析式为:y=-2)+8,2.四边形EFGH是正方形,:.GH=FG=2OG,设-l?+8)(f 0),2-A?+8=2f,2解得:t =2+2A/5(2=_ 2 -2A/5 (舍),.,.此 正 方 形 的 面 积(2/)2=4尸=4 (-2+2遥)2=(9 6 -3 2而)dn?-,(2)如图 2,由(1)知:设,(/,-1?+8)(f 0),,矩形 E F G H 的周长=2尸G+2 G”=4 f+2 (-工尸+8)=-?+4 r+1 6=-(f -2)2+2 0,2V -1=.=H.=A,M N Q M 3:.M Q 3 M N=9,:.Q(0,1 2),设Q N的解析式为:y=kx+h,.f b=1 2 ,I 2 V 2 k+b=4.f k=-2 V 2,lb=1 2 ,;.Q N的解析式为:y=-2&x+1 2,-贵+8=-2&X+1 2,-kr2-2Mx+4=0,2=(-2 V 2)2-4 x l x 4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,2.若切割成圆,能切得半径为3山的圆.【点评】本题是二次函数与圆,四边形的综合题,考查了利用待定系数法求二次函数和一次函数的解析式,圆的切线的性质,矩形和正方形的性质,二次函数的最值问题,综合性较强,并与方程相结合解决问题是本题的关键.2 8.(1 2分)如 图1,在 4 8 C中,Z B A C=9 0 ,Z C=6 0 ,点。在B C边上由点C向点B运 动(不与点8、C重合),过点D作。交射线A B于点E.(1)分别探索以下两种特殊情形时线段A E与B E的数量关系,并说明理由:点E在线段A B的延长线上且B E=B D;点E在线段A B上且EB=ED.(2)若 A 8=6.当 迈=近 时,求A E的长;A D 2直接写出运动过程中线段A E长度的最小值.AA【分析】(1)由 DE_LA。,BE=BD,ZEAD=ZBDA,有 AB=BD,即可得=AB,AE=2BE;由/&4C=90,ZC=60,EB=ED,可 得NEDB=NB=30,即得/AED=NEOB+ZB=60,根据 E_LAO,可得 AE=2E),故 AE=2E&(2)过。作。尸 J_A8于凡 证明A F OSAAOR由迈=返,可得更=返,设A D 2 A F 2D F=H m,则 A F=2m,在/中,BF=M D F=3m,而 A B=6,可得机=且,5有 4尸=卫,AD=7AF2+D F2 =i7 又他二 辿,即可得4E=Z 1;5 5 5 A D A E 5作AE的中点G,连接。G,根据/4DE=90,0G 是斜边上的中线,得AE=2DG,即知当AE最小时,QG最小,止 匕 时 OGLBC,可证AG=EG=BE,从而得线段AE长度的最小值为4.【解答】解:(1)AE=2BE,理由如下:,:DEAD,:.ZAED+ZAD=90=ZADE=ZBDE+ZBDA,:BE=BD,:.NAED=NBDE,:.4EAD=NBDA,:.AB=BD,:.BE=BD=AB,:.AE=2BE-,AE=2EB,理由如下:如图:NB=30,:EB=ED,:/E D B=/B=3 0 ,:./A E D=NEDB+/B=60,VDEAD,:.ZEDA=90Q,ZEAD=30,:AE=2ED,:.AE=2EB(2)过。作。F_LAB于 R如图:AF=DF 即 DE=DF*AD-DE,AD I F.DE,AD T DF=我,A F亍设 D F=-3m,则 AF=2m,在 RtZBO尸中,BF=43DF=3m,:AB=6,:.BF+AF=6,即 3机+2m=6,:.A F=H,DF=$M.,5 5,MD=A F2+D F2=7_;D:/AFD/ADE,1 2 近 A F A D 即 5 _ 5A D A E W7 A E5.AE=21;5作AE的中点G,连接。G,如图:,:ZADE=90Q,0G是斜边上的中线,:.AE=2DG,Z)G=AG=EG,当AE最小时,OG最小,此时。GLBC,VZB=30,:.BG=2DG,:.AE=2DG=BG,:.BE=AG,:.AG=EG=BE,此时 AE=24B=4,3答:线段AE长度的最小值为4.【点评】本题考查三角形综合应用,涉及相似三角形性质与判定,直角三角形斜边上的中线等于斜边的一般,含3 0 的直角三角形三边关系等知识,解题的关键时作辅助线,构造直角三角形解决问题.

    注意事项

    本文(2022年江苏省扬州市中考数学试卷(解析版).pdf)为本站会员(奔***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开