2022年江苏省徐州市中考数学真题卷(含答案与解析).pdf
2022徐州市初中学业水平考试试题数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题每小题选出答案后,用 2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。答在试题卷上无效。3.非选择题的作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。答在试题卷上无效。4.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。一、选择题(本大题共有8 小题,每小题3 分,共 24分.在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置)1.-3 的绝对值是()A.-3 B.3 C.-D.-2.下列图案是轴对称图形但不是中心对称图形的是(3.要使得式子病与有意义,则的取值范围是(A.x 2B.x 2D.x 1,(2)解不等式组:0 +工-2 B.x 2 C.x 2 D.x0,解得故选:B.【点睛】本题主要考查二次根式有意义的条件的知识点,代数式的意义一般从三个方面考虑:(1)当代数式是整式时,字母可取全体实数;(2)当代数式是分式时,分式的分母不能为0;(3)当代数式是二次根式时,被开方数为非负数.4.下列计算正确的是()A.cT-ct B.a8-i-a4=a1C.2 a 2+3/=6/D.(-3 t/)2=-9 2【答案】A【解析】【分析】根据同底数基的乘法,同底数塞的除法,合并同类项,积的乘方逐项分析判断即可求解.【详解】解:A.a2.a6a8,故该选项正确,符合题意;B./+/=/,故该选项不正确,不符合题意;c.2 a2+3 a2=5 a2,故该选项不正确,不符合题意;D.(-3 c?)2=9 a2,故该选项不正确,不符合题意;故选A【点睛】本题考查了同底数幕的乘法,同底数幕的除法,合并同类项,积的乘方,正确的计算是解题的关键.5.如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是()【答案】D【解析】【分析】根据骰子表面展开后,其相对面的点数之和是7,逐项判断即可作答.【详解】A项,2的对面是4,点数之和不为7,故A项错误;B项,2的对面是6,点数之和不为7,故B项错误;C 项,2 的对面是6,点数之和不为7,故 C 项错误;D 项,1的对面是6,2 的对面是5,3 的对面是4,相对面的点数之和都为7,故 D 项正确;故选:D.【点睛】本题主要考查了立体图形的侧面展开图的知识,解答时,找准相对面是解答本题的关键.没有共同边的两个面即为相对的面.6.我国近十年的人口出生率及人口死亡率如图所示.2012年2013年2014年2015年2016年2017年20年年20年年2020年2021年,人口出生率(%0)-人口死亡率(%0)已知人口自然增长率=人口出生率一人口死亡率,下列判断错误的是()A.与 2012年相比,2021年的人口出生率下降了近一半B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降【答案】C【解析】【分析】根据折线统计图逐项分析判断即可求解.【详解】解:A.与 2012年相比,2021年的人口出生率下降了近一半,故该选项正确,不符合题意;B.近十年的人口死亡率基本稳定,故该选项正确,不符合题意;C.近五年的人口总数持续上升,只是自然增长率在变小,故该选项不正确,符合题意;D.近五年的人口自然增长率持续下降,故该选项正确,不符合题意.故选C.【点睛】本题考查了折线统计图,从统计图获取信息是解题的关键.7.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为()【答案】B【解析】【分析】如图,将阴影部分分割成图形中的小三角形,令小三角形的面积为。,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【详解】解:如图,根据题意得:图中每个小三角形的面积都相等,设每个小三角形的面积为。,则阴影的面积为6”,正六边形的面积为18a,将一枚飞镖任意投掷到镖盘上,飞镖落在阴影区域的概率为卷=2.18a 3故选:B【点睛】本题主要考查几何概率,根据正六边形的性质得到图中每个小三角形的面积都相等是解题的关键.8.如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为()A.5 B.6 C.D.3 3【答案】c【解析】【分析】证明求得4 E:C E,再根据三角形的面积关系求得结果.【详解】解:。相,Z.X A B E s C D E,A E A B 4-=-=-=2,C E C D 2.c 2 c 2 1 -1 6 S 阴影=SAABC=X X 4 x 4 =,故选:C.【点睛】本题主要考查了相似三角形的性质与判定,三角形的面积公式,关键在于证明三角形相似.二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)9 .因式分解:%2-1 =.【答案】(x+l)(x-l)#(x-1)(J C+1)【解析】【分析】平方差公式:a2-b2=(a+b)(a-b),直接利用平方差公式分解因式即可.【详解】解:x2-l=(x+l)(x-l),故答案为:(%+l)(x1)【点睛】本题考查的是利用平方差公式分解因式,掌 握“平方差公式:片0 2=(。+(。与”是解本题的关键.1 0 .正十二边形每个内角的度数为一.【答案】150【解析】【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【详解】试题分析:正十二边形的每个外角的度数是:幽=30。,12则每一个内角的度数是:180。-30。=150。.故答案为150.11.方程3 3=2的解是x=_.x x-2【答案】6【解析】【详解】试题分析:两边同乘以x(x-2)可得:3(x-2)=2x,解得:x=6,经检验:x=6是方程的根.12.我国2021年粮食产量约为13700亿斤,创历史新高,其 中 13700亿斤用科学记数法表示为 亿斤.【答案】1.37X104【解析】【分析】用科学记数法表示较大的数时,一般形式为a x lO ,其中1旦。|10,为整数.【详解】解:13700=1.37x104.故答案为:1.37x10、【点睛】本题考查了科学记数法,科学记数法的表示形式为a x 10的形式,其中为整数.确定的值时,要看把原来的数,变成“时,小数点移动了多少位,W的绝对值与小数点移动的位数相同.当原数绝对值2 1 0 时,是正数;当原数的绝对值V I 时,是负数,确定。与“的值是解题的关键.13.如图,A、B、C 点在圆。上,若/ACB=36。,则/AOB=.【答案】72。#72度【解析】【分析】利用一条弧所对的圆周角等于它所对的圆心角的一半即可得出结论.【详解】解:v ZACB=-ZAOB,NACB=36,2,ZAOB=2xZACB=12.故答案为:72.【点睛】本题主要考查了圆周角定理,利用一条弧所对的圆周角等于它所对的圆心角的一半解答是解题的关键.14.如图,圆锥的母线A B=6,底面半径C 8=2,则其侧面展开图扇形的圆心角a=.【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的a4 x 6母线长和弧长公式得到-=2兀 2,然后解方程即可.180an x 6【详解】解:根据题意得一大1=2兀 2,180解得a=120,即侧面展开图扇形的圆心角为120.故答案为120.【点睛】本题考查圆的周长公式,弧长公式,方程思想在初中数学的学习中非常重要,是中考的热点,在各种题型中均有出现,要特别注意.15.若一元二次方程N+x-c=0没有实数根,则c的 取 值 范 围 是.【答案】c -#c-0.2 54【解析】【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:;一元二次方程r+%。=0没有实数根,=4x 1 x(-c)0,解得c J,4故答案为:c 0时,方程有两个不相等的实数根;当 =()时,方程有两个相等的实数根;当/=A B=3,BC=AD=5,V Z D=9 0,D F =yJCF2-C D2=4所 以 河=一。尸=5-4=1,所 以BE=EF=x,贝lj A E=A 8-B E=3-x,在直角三角形A E 5中:A E2+AF-=EF-,/.(3-%)2+12=%2,解得x =,34故答案为:一.3【点睛】本题考查了图形折叠的性质,勾股定理,矩形的性质,在直角三角形A E F中运用勾股定理建立方程求解是关键.31 7.若一次函数丁=丘+6的图像如图所示,则关于依+56 0的 不 等 式 的 解 集 为.y【答案】x -3【解析】【分析】根据函数图像得出人=-2%,然后解一元一次不等式即可求解.【详解】解:.根据图像可知丫=区+6与x轴交于点(2,0),且上 0,2Z+力=0,解得人=一2%,3/.kx+b 0,2,3bx -,2k即2k解得x 3 故答案为:x 3.【点睛】本题考查了一次函数与坐标轴的交点问题,解一元一次不等式,求得一次函数与坐标轴的交点是解题的关键.18.若二次函数y=Y 一2%-3的图象上有且只有三个点到x轴的距离等于机,则机的值为.【答案】4【解析】【分析】由抛物线解析式可得抛物线对称轴为直线4 1,顶 点 为(1,-4),由图象上恰好只有三个点到x轴的距离为机可得w=4.详解解:Vy=x2-2 x-3 =(x-l)2-4,抛物线开口向上,抛物线对称轴为直线k 1,顶 点 为(1,-4),顶点到x轴的距离为4,.函数图象有三个点到x轴的距离为?,/.m=4,故答案为:4.【点睛】本题考查了二次函数图象上点的坐标特征,能够理解题意是解题的关键.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:1(-1)2*6-3+次;+4x +4【答 案】(1)4-V 3【解析】【分析】(1)先用乘方、绝 对 值、负整数次第、算术平方根化简,然后再计算即可;(2)按照分式混合运算法则计算即可.【小 问1详 解】解:(7)2磔+27卜 口 +.=1 +3-7 3-3 +3=4/3 【小 问2详 解】x+2(x+2)-:9X Xx+2 x2-X-X (x +2)x +2【点睛】本题主要考查了实数的混合运算、分式的混合运算、负整数次哥等知识点,灵活运用相关运算法则成为解答本题的关键.2 0.解 方 程:X2-2X-1 =0:2 x 1 2 1,(2)解不等式组:,1+x.2【解 析】【分析】(1)根据配方法解一元二次方程即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:X2-2X+1=2(x-1)=2,x 1 =/2,%)-1 -V2,w=1 +V2:2 1 21解不等式得:x,解不等式得:x 2,不等式组的解集为:x 2.【点睛】本题考查了解一元一次不等式组,解一元二次方程,正确的计算是解题的关键.2 1.如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.2【答案】(1)|-3【解析】【分析】(1)直接由概率公式求解即可;(2)列表或画树状图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,再由概率公式求解即可.【小问1详解】解:根据题意,3张扑克牌中,数字为2的扑克牌有一张,数字为3的扑克牌有两张,从中随机抽取1 张,抽得扑克牌上的数字为3的概率为2:,2故答案为:;【小问2详解】解:画树状图如下:如图,共有6 种等可能的结果,其中抽到2 张扑克牌的数字不同的结果有4 种,4 2.抽得2张扑克牌的数字不同的概率为P =.6 3【点睛】本题考查用列表或画树状图求概率,列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合两步或两步以上完成的事件,解题的关键是能准确利用列表法或画树状图法找出总情况数及所求情况数.2 2.孙子算经是中国古代重要的数学著作,该书第三卷记载:”今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6 头 4 脚的兽与一种4头 2 脚的鸟,若兽与鸟共有7 6 个头与4 6 只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x 个,鸟有y只,可列方程组为(2)求兽、鸟各有多少.【答案】(1)6x+4y=764x+2y=46(2)兽有8 只,鸟有7只.【解析】【分析】(1)根 据“兽与鸟共有7 6 个头与4 6 只脚”,即可得出关于x、y的二元一次方程组;(2)解方程组,即可得出结论.【小 问 1 详解】解:兽与鸟共有7 6 个头,;.6 x+4)=7 6;.兽与鸟共有4 6 只脚,.4 x+2 y=4 6.可列方程组为6x+4y=764x+2y=46故答案为:6x+4y=764x+2y=46【小问2详解】解:原方程组可化简为3x+2y=38 2x+y=23 由可得)=2 3-2 r,将代入得3 x+2 (2 3-2%)=3 8,解得户8,.)=2 3-2 1=2 3-2 x 8=7.答:兽有8只,鸟有7只.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2 3.如图,在平行四边形A B C 中,点E、尸在对角线8。上,且求证:(1)A B E丝C D F;(2)四边形4 E C尸是平行四边形.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据平行四边形的性质可得A 3 C O,A B =C D,根据平行线的性质可得Z A B E =Z C D F,结合已知条件根据S AS即可证明A A B E当L C D F;(2)根据尸可得A E =C尸,N A E 8 =NCED,根据邻补角的意义可得Z A E F =N C F E ,可得AE C尸,根据一组对边平行且相等即可得出.【小 问1详解】证明:解:I四边形A B C D是平行四边形,A B/C D,A B =C D,:.Z A B E =Z C D F,又 B E =D F,:.A A B EA CD F (S AS);【小问2详解】证明:4 8金48/,A E =CF,Z A E B =Z C F D:.ZAEF=NCFE:.A E/C F,.四边形A Eb是平行四边形【点睛】本题考查了平行四边形的性质与判定,全等三角形的性质与判定,掌握平行四边形的性质与判定是解题的关键.24.如图,如图,点4、B、C在圆。上,N A B C =60,直线=点0在8。上.(1)判断直线A O与圆。的位置关系,并说明理由;(2)若圆的半径为6,求图中阴影部分的面积.【答案】(1)直线A D与圆。相切,理由见解析1 2万-9G【解析】分析】(1)连接0 A,根据和A8=AD,可得/O 8 C=/A2Z)=N Z)=3 0。,从而得到ZBAD=120,再由。4=。8,可得N BAO=N AB =3 0。,从而得到/O AO=9 0。,即可求解;(2)连接0 C,作O HL B C于H,根据垂径定理可得0 H =,0 8 =3,进而得到6 c =28”=6百,再2根据阴影部分的面积为S扇 形BO C -S.BOC)即可求解.【小 问1详解】解:直线4。与圆。相切,理由如下:如图,连接0 4,AD/BC,N D=N D B C,:AB=AD,:.Z D=Z A B D,:Z A B C =60,Z./DBC=/ABD=/D=30。,:.ZBAD=120,:OA=OB,:.ZBAO=ZABD=30,:.ZOAD=9 0,:.OA_LAD,。4是圆的半径,,直线AO与园0相切,【小问2详解】解:如图,连接OC,作O”_LBC于,0B=0C=6,ZOCB=ZOBC=30,:.ZBOC=20,OH=10B=3,2*-BH=4BOr-OH2=373,:.BC=2BH=6A/3,扇形BOC的面积为u1 Ouf)xx 6?xX 乃7 T=2万,360SAOBC=g BC-0H=g x 6百 x 3=9 百,阴影部分的面积为s扇 形B O C =12%-9 G.【点睛】本题主要考查了切线的判定,求扇形面积,垂径定理,熟练掌握切线的判定定理,并根据题意得到阴影部分的面积为S扇 形 一 S.BOC是解题的关键.25.如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4*2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8m m,质量为24.4g.已知这些古钱币的材质相同.45.4*2.8mm.24.4g 48.】,2.4mm.24.0g 45.1*2.3mm.13.0g 44.6*2.1mm.20.0g 45.5*2.3mm.21.7g文星高照 状元及第 鹿鹤同春 顺风大吉 连中三元根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是 m m,所标厚度的众数是 m m,所标质量的中位数是 g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.【答案】(1)45.74,2.3,21.7;(2)“鹿鹤同春”的实际质量约为21。克.【解析】【分析】(1)根据平均数、众数和中位数 定义求解即可;(2)根据题中所给数据求出每一枚古钱币的密封盒质量,即可判断出哪枚古钱币所标的质量与实际质量差异较大,计算其余四个密封盒的平均数,即可求得所标质量有错的古钱币的实际质量.【小 问 1详解】解:平均数:1 x(45.4+48.1 +45.1 +44.6+45.5)=45.74mm;这 5 枚古钱币的厚度分别为:2.8mm,2.4mm,2.3mm,2.1mm,2.3mm,其中2.3mm出现了 2 次,出现的次数最多,.这5 枚古钱币的厚度的众数为2.3mm;将这5 枚古钱币的重量按从小到大的顺序排列为:13.0g,20.0g,21.7g,24.0g,24.4g,.这5 枚古钱币质量的中位数为21.7g;故答案为:45.74,2.3,21.7;【小问2 详解】名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”所标质量与实际质量差异较大.H 人 rm 人人 皿”34.3+34.1 +34.3+34.1其余四个盒子质量的平均数为:-=34.2g,455 2-34.2=21.0g故“鹿鹤同春”的实际质量约为21.0克.【点睛】本题考查了平均数、中位数和众数的求解,平均数的应用,将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;众数就是一组数据中出现次数最多的那个数据.一组数据中,众数可能不止一个.2 6.如图,公园内有一个垂直于地面的立柱A B,其旁边有一个坡面C Q,坡角N Q C N=3 0 .在阳光下,小明观察到在地面上的影长为1 2 0 c m,在坡面上的影长为1 8 0 c m.同一时刻,小明测得直立于地面长 60cm的木杆的影长为90cm(其影子完全落在地面上).求 立 柱 4 B 的高度.【答案】(170+606)cm【解析】【分析】延长AO交 BN于点E,过点。作。凡LBN于点F,根据直角三角形的性质求出Q F,根据余弦的定义求出C F,根据题意求出E居 再根据题意列出比例式,计算即可.【详解】解:延长AO交 8N 于点E,过点D作D FLBN于点F,在 RSC0B 中,ZCFD=90,ZCF=30,则。F=;C=90(cm),CF=CD-cosZDCF=180 x2.=9073(cm),2 2由题意得:空 二 叱 即 空二竺EF 90 EF 90解得:EF=135,:.BE=BC+CF+EF=120+90 也+135=(255+90)cm,则AB 60255+9 0 90解得:AB=170+60 G,答:立柱A 8的高度为(1 7 0+6 0 G)c m.【点睛】此题考查了解直角三角形的应用-坡度坡角问题、平行投影的应用,解题的关键是数形结合,正确作出辅助线,利用锐角三角函数和成比例线段计算.Q2 7.如图,一次函数丁 =辰+。伏 0)的图像与反比例函数y =(x 0)的图像交于点A,与 轴交于点xB,与 y 轴交于点C,4。,轴于点。,C B =C。,点C关于直线AD的对称点为点E.(1)点 是否在这个反比例函数的图像上?请说明理由;(2)连接AE、D E,若四边形ACDE为正方形.求攵、匕的值;若点P在 y 轴上,当|P E-P B|最大时,求点尸的坐标.【答案】(1)点 E在这个反比例函数的图像上,理由见解析(2)=1,b=2;点P的坐标为(。,一 2)【解析】/8、【分析】(1)设点A的坐标为。,一),根据轴对称的性质得到A D _ L C E,AD平分CE,如图,连接mC E 交 A D 于 H,得到C H=E H,再结合等腰三角形三线合一得到C”为A4CD边 AO上的中线,即A H=HD,求出进而求得E(2/,巴),于是得到点E在这个反比例函数的图像上;k m J m(2)根据正方形的性质得到AO=C,垂直平分CE,求得=设点A的坐标为,8、(见 一),得到加=2 (负值舍去),求得A(2,4),C(0,2),把 A(2,4),C(0,2)代入y =+人得,解方m程组即可得到结论;延 长 交 轴于尸,根据已知条件得到点8与点。关于y 轴对称,求得 P E-P D P E-P B ,则点P即为符合条件的点,求得直线 E 的解析式为y=x-2,于是得到结论.【小 问 1 详解】解:点E在这个反比例函数的图像上.理由如下:Q 一次函数y=依+b(女 0)的图像与反比例函数y=9。0)的图像交于点A,x,8、设点A的坐标为(?,一),m 点C关于直线A D的对称点为点E,:.AD C E,AO平分CE,.-4_1_%轴于。,.CEx轴,ZADB=90,:.Z C D O+Z A D C =90,;CB=C D,:C B O =/C D O,在 RtAABZ)中,Z A B D+Z B A D =90,:.Z C A D =Z C D A,.CH为AACD边A上的中线,即 A/7=H D,H(血,一),E(2m,),mc 4 C,/2 m x =8,m 点E在这个反比例函数的图像上;【小问2详解】解:.四边形ACQE为正方形,;.A D =CE,AO 垂直平分 C E,:.C H=-A D,2Q设点A的坐标为(7,1),mgC H =m,A D ,m1 8.2 二 X ,2 mm -2(负值舍去),A A(2,4),C(0,2),2k+b=4把 A(2,4),C(0,2)代入丫=+6 得b=2k=b=2;延长ED交丁轴于P,如图所示:2。+=04=2,解得;CB=C D,0 C 1.B D,点B与点。关于y 轴对称,:PE-PD P E-P B ,则点p即为符合条件的点,由知,A(2,4),C(0,2),.0(2,0),(4,2),设直线D E的解析式为y=依+,6 Z =1 =-2,直 线。石的解析式为y=x2,当x =0时,y=-2,B P(0,-2),故当|P E-P 最 大 时,点尸的坐标为(0,2).【点睛】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.2 8.如图,在AABC 中,Z B A C=9 0,A B=A C=2,点 P在边A B 上,D、E分别为B C、PC 的中点,连接。E.过点作B C的垂线,与8 C、A C分别交于尸、G两 点.连 接。G,交P C于点H.A A(1)/E C的度数为;(2)连接尸G,求AAPG的面积的最大值;(3)P E与QG存在怎样的位置关系与数量关系?请说明理由;(4)求 色 的 最 大 值.C E【答案】(1)4 5 (2)9(3)P E=D G,理由见解析(4)2【解析】【分析】(1)先说明N 8=4 5。,再说明O E是A C B P的 中 位 线 可 得 然 后 由 平 行 线 的 性 质 即 可 解答;(2)先说明 E Q F和 G F C是等腰直角三角形可得。F=EF=1DE、G F=C F=-C G:设A P=x,则2 2BP=12-x,BP=2-x2DE,然后通过三角形中位线、勾股定理、线段的和差用x表示出A G,再根据三角形的面积公式列出表达式,最后运用二次函数求最值即可;(3)先证明 G F Z)丝 CF E,可得。G=CE,进而可得 P E=Z)G;由 G E D四CF E可得/E CF=/Z)G F,进而得到N G”E=N CF E=9 0。,即可说明。G、P E的位置关系;(4)先说明 C E/s a c r w得到C E =C F ,进而得到 CJH =CF -C D然后将己经求得的量代入可得C D C H C E C E2C H=_ 1 2 z、2=一 s 2 8 8 然后根据a+=&+=一222求最值即可.C E x +1 2 +0一 2 4 a I G【小 问1详解】解:,在A A B C 中,Z B A C=9 0 ,A B=A C=2:.NB=NACB=45。V,D、E分别为8 C、P C的中点J.DE/BP,DE=LBP2:.ZEDC=ZB=45.【小问2详解】解:如图:连接PGV ZEDC=ZACB=45f GFLDCEDb和 GbC是等腰直角三角形万/?:.DF=EF=D E ,GF=CF=匕C G,2 2设 4尸 二M 则 BP=12-x,BP=12-x=2DE.12 x 1 2 -x DE=-,EF=-T=-2 2 V 2RA APC,*-PC=yjAP2+AC2=7 7+1 4 4/CE=-yj x+1 4 42:Rt&EFC:FC=FG=4 C E-E F-=门4 2+1 4 4 _佟 父|=l(x+12)=12+x认 2 J I 2 /2 J V 8 2A/2;.CG=V CF=U1 2 +x:.AG=2-CG=2-21 2-x2 .ScA APG=1 4 r,.1 1 2 x 1 2 x x2 (x 6)+3 6-APAG-X-=-2 2 2 4 4所以当x=6时,S“PG有最大值9.【小问3详解】解:DG=PE,D G LPE,理由如下:,:DF=EF,NCFE=ZGFD,GF=CF:.AGFDACF(SAS):.DG=CE是PC的中点PE=CE:.PE=DG;:AGFD 空 ACFE:.NECF=NDGF,:NCEF=NPEG:.NGHE=NEFC=90,即 DGLPE.【小问4详解】解::GFDQXCFE:.NCEF=NCDH又 :2ECF=/DCH:.CEFs/CDHCE CF=,即CD CH.CH CF CD,CE CE21 2 +x /7F C=,CE=3 T x+1 4 4 ,CD=-BC=V 1 22+1 22=6 7 22CHCE*L&+1 4 4221 2 x I2.1 21-2+144 X+12+88-24 1 2 _ 1 2 _ _ 20+2 _ 6+1-2 7 2 8 8-2 4 -2 4 7 2-2 4 -2 5/2-2 -4 2.嘿 的 最 大 值 为 誓1【点睛】本题主要考查了三角形中位线、平行线的性质、二次函数求最值、全等三角形的判定与性质、相似三角形的判定与性质等知识点,综合应用所学知识成为解答本题的关键.