欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初三中考数学必备复习资料.docx

    • 资源ID:8822020       资源大小:32.78KB        全文页数:11页
    • 资源格式: DOCX        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初三中考数学必备复习资料.docx

    初三中考数学必备复习资料 当你真正想完成一件事时,根本不会在意别人是否看到。备考漫漫长路,我和你一起静默地走下去。下面是我为大家整理的有关初三中考数学必备复习资料,希望对你们有帮助! 初三中考数学必备复习资料1 圆学问点汇总 圆的半径:r 直径:d 圆周率:(数值为3.1415926至3.1415927之间无限不循环小数),通常采纳3.14作为的值 圆面积:S=r2或S=(d/2)2 半圆的面积:S半圆=(r2)/2 圆环面积:S大圆-S小圆=(R2-r2)(R为大圆半径,r为小圆半径) 圆的周长:C=2r或c=d 半圆的周长:d+d/2或者d+r 垂径定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧 进一步结论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 特殊留意:这两个定理,哪个定律规定弦不是直径。留意选择题陷阱。 1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径 圆上各点到定点的距离都等于定长 到定点的距离等于定长的点都在同个平面上 因此,圆心为O、半径为r的圆可以看成全部到定点O距离等于定长r的点的集合 2、弧、弦、圆心角 弧:圆上随意两点间的部分叫做圆弧,简称弧。 圆的随意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 弦:连接圆上随意两点的线段,叫做弦。经过圆心的弦,叫做直径 圆心角:顶点在圆心的角 圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴 圆是中心对称图形,圆心O是它的对称中心 3、圆周角 顶点在圆上,并且两边都圆相交的角叫做圆周角。 4、圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 推论: 半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。 推论: 圆的内接四边形对角之和为180度 留意:对内接四边形的判定,必需4个顶点都在圆上。 5、点和圆的位置关系 点P在圆内d点P在圆上d=r 点P在圆外d>r 6、不在同始终线上的三个点确定一个圆 留意:不在同始终线这一要点 经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆 外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心 特别的:直角的外心在斜边上的中点。 一般求外心的题往往是直角或者等腰,等腰请结合垂径定理和勾股定理 7、直线和圆的位置关系 直线l和圆O相交(有两个公共点)d直线l和圆O相切(有一个公共点)d=r直线为切线,点为切点 直线l和圆O相离(没有公共点)d>r 8、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 在敏捷运用该定理的同时,切莫遗忘第三大点中的判定方法!(往往在出现角平分线、等腰三角形的场所,我们须要用到此方法去判定相切) 9、切线的性质定理 圆的切线垂直于过切点的半径 这两个定理的运用:前者是不清晰直线与圆的关系,进行推断。后者是已知直线与圆相切,进行性质分析。 10、切线长定理 经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。 11、三角形的的内心 与三角形各边都相切的圆叫做三角形的内切圆。 内切圆的圆心是三角形三条角一部分线的交点,叫作三角形的内心。 留意内心外心的区分和应用。三角形的内心必定在内部,外心则有可能在外部 内切圆半径的计算方法 三角形面积=内切圆半径_三角形周长/2 例题(2022广东南塘二模)RtABC中,C=90°,AC=4,BC=3,内切圆半径=; 12、点和圆的位置关系 点P在圆内d点P在圆上d=r 点P在圆外d>r 13、三个相等: 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 在同圆或等圆中,假如两两弧相等,那么它们所对应的圆心角相等,所对的弦相等。 在同圆或等圆中,假如两条弦相等,那么它们所对应的圆心角相等,所对的弧相等。 14、直线和圆的位置关系 直线与圆相交(两个交点)d直线与圆相切(一个交点)d=r 直线与圆相离(没有交点)d>r 15、圆和圆的位置关系 圆与圆相交(两个交点)R-r圆与圆相切(一个交点)d=R-r(内切)d=R+r(外切) 圆与圆外离(没有交点)d>R+r 圆与圆内含(没有交点)d还一种最特别状况,同心圆d=0 留意:相切肯定要看清晰,是内切还是外切,还是两种都可能 学生可尝试画一个数轴区域示意图 16、对圆而言,请注意其对称性 相切的两个圆,不论内切外切,明显,切点和两个圆心应当在同始终线上。 17、扇形的弧长及面积 扇形:由两条半径及两条半径组成的角对应的弧形成的图形 扇形弧长: 留意区分弧长与周长 扇形面积 弧长及面积的关系 18、正多边形 正多边形:各边长相等,各顶角相等的多边形 我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心 外接圆的半径叫做正多边形的半径 正多边形的每一边所对的圆心角叫做正多边形的中心角 中心到正多边形的一边的距离叫做正多边形的边心距 正多边形的计算:遵循每条边所对应的圆心角的度数为360/n即可,利用垂径定理,等腰三角形进行解答。 19、圆锥的侧面积和全面积 圆锥是由一个底面和一个侧面围成的 我们把连接圆锥顶点和底边圆周上随意一点的线段叫做圆锥的母线 圆锥的侧面绽开图是一个扇形。设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为,因此圆锥的侧面积为,圆锥的全面积为 圆锥侧面绽开扇形的中心角可通过此扇形的弧长及半径,进行计算 20、把一个图形绕某一点O转动一个角度的图形变换叫做旋转。 点O叫做旋转中心,转动的角叫做旋转角。 假如图形上的P经过旋转变为点P,那么这两个点叫做这个旋转的对应点 把一个图形围着某一个点旋转180度 假如旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。 初三中考数学必备复习资料2 【有理数】 整数正整数/0/负整数 分数正分数/负分数 【数轴】 画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 任何一个有理数都可以用数轴上的一个点来表示。 假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 【肯定值】 在数轴上,一个数所对应的点与原点的距离叫做该数的肯定值。 正数的肯定值是他的本身、负数的肯定值是他的相反数、0的肯定值是0。两个负数比较大小,肯定值大的反而小。 【有理数的运算】 加法: 同号相加,取相同的符号,把肯定值相加。 异号相加,肯定值相等时和为0;肯定值不等时,取肯定值较大的数的符号,并用较大的肯定值减去较小的肯定值。 一个数与0相加不变。 减法: 减去一个数,等于加上这个数的相反数。 乘法: 两数相乘,同号得正,异号得负,肯定值相乘。 任何数与0相乘得0。乘积为1的两个有理数互为倒数。 初三中考数学必备复习资料本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第11页 共11页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页

    注意事项

    本文(初三中考数学必备复习资料.docx)为本站会员(w****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开