欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    选修44数学知识点.docx

    • 资源ID:88278135       资源大小:14.18KB        全文页数:6页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    选修44数学知识点.docx

    选修4-4数学知识点 选修4-4数学学问点 选修4-4数学学问点一、选考内容坐标系与参数方程高考考试大纲要求:1坐标系:理解坐标系的作用.了解在平面直角坐标系伸缩变换作用下平面图形的变化状况.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区分,能进展极坐标和直角坐标的互化.能在极坐标系中给出简洁图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比拟这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.2参数方程:了解参数方程,了解参数的意义.能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、学问归纳总结: 1伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换 xx,(0),yy,(0).的作用下,点P(x,y)对应到点P(x,y),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 :2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。3点M的极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的xOM叫做点M的极角,记为。有序数对(,)叫做点M的极坐标,记为M(,). 极坐标(,)与(,2k)(kZ)表示同一个点。极点O的坐标为(0,)(R).4.若0,则0,规定点(,)与点(,)关于极点对称,即(,)与 (,)表示同一点。 2x2y2,xcos,5极坐标与直角坐标的互化: yysin,tan(x0)x 6。圆的极坐标方程: 在极坐标系中,以极点为圆心,r为半径的圆的极坐标方程是r;在极坐标系中,以C(a,0)(a0)为圆心,a为半径的圆的极坐标方程是2acos; C(a,)2(a0)为圆心,a为半径的圆的极坐标方程是在极坐标系中,以 2asin; 假如规定0,02,那么除极点外,平面内的点可用唯一的极坐标(,)表示;同时,极坐标(,)表示的点也是唯一确定的。 7.在极坐标系中,(0)表示以极点为起点的一条射线;(R)表示过极点的一条直线. 在极坐标系中,过点A(a,0)(a0),且垂直于极轴的直线l的极坐标方程是 cosa. 8参数方程的概念:在平面直角坐标系中,假如曲线上任意一点的坐标x,y都 xf(t),t是某个变数的函数yg(t),并且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联 系变数x,y的变数t叫做参变数,简称参数。 相对于参数方程而言,直接给出点的坐标间关系的方程叫做一般方程。 xarcos,(为参数)222ybrsin.9圆(xa)(yb)r的参数方程可表示为.xacos,x2y2(为参数)212ybsin.(ab0)b椭圆a的参数方程可表示为. x2px2,(t为参数)2y2pt.抛物线y2px的参数方程可表示为. xxotcos,yyotsin.M(x,y)经过点Ooo,倾斜角为的直线l的参数方程可表示为(t为参数). 10在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与一般方程的互化中,必需使x,y的取值范围保持全都. 扩展阅读:高中数学选修4-4学问点归纳 高中数学选修4-4学问点总结 一、选考内容坐标系与参数方程高考考试大纲要求: 1坐标系: 理解坐标系的作用. 了解在平面直角坐标系伸缩变换作用下平面图形的变化状况. 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区分,能进展极坐标和直角坐标的互化. 能在极坐标系中给出简洁图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比拟这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2参数方程:了解参数方程,了解参数的意义.能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、学问归纳总结: 1伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换:xx,(0),yy,(0).的作用下, 点P(x,y)对应到点P(x,y),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 3点M的极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的xOM叫做点M的极角,记为。有序数对(,)叫做点M的极坐标,记为M(,). 极坐标(,)与(,2k)(kZ)表示同一个点。极点O的坐标为(0,)(R). 4.若0,则0,规定点(,)与点(,)关于极点对称,即(,)与(,)表示同一点。 假如规定0,02,那么除极点外,平面内的点可用唯一的极坐标(,)表示;同时,极坐标(,)表示的点也是唯一确定的。 2xy,22xcos,tanyx(x0)5极坐标与直角坐标的互 6。圆的极坐标方程: ysin,化: -1- 在极坐标系中,以极点为圆心,r为半径的圆的极坐标方程是r; 在极坐标系中,以C(a,0)(a0)为圆心,a为半径的圆的极坐标方程是2acos;在极坐标系中,以C(a,)(a0)为圆心,a为半径的圆的极坐标方程是2asin; 27.在极坐标系中,(0)表示以极点为起点的一条射线;(R)表示过极点的一条直线. 在极坐标系中,过点A(a,0)(a0),且垂直于极轴的直线l的极坐标方程是cosa. 8参数方程的概念:在平面直角坐标系中,假如曲线上任意一点的坐标x,y都是某个变数t的函数 xf(t),并且对于t的每一个允许值,由这个方程所确定的点M(x,y)yg(t),都在这条曲线上,那么这 个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做一般方程。9圆(xa)2(yb)2r2的参数方程可表示为xa22xarcos,ybrsin.(为参数). 椭圆 yb22xacos,(为参数).1(ab0)的参数方程可表示为ybsin.抛物线y2x2px2,(t为参数).2px的参数方程可表示为y2pt.(xo,yo),倾斜角为O经过点Mxxotcos,l的直线的参数方程可表示为(tyytsin.o为参数). 10在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与一般方程的互化中,必需使x,y的取值范围保持全都. 友情提示:本文中关于选修4-4数学学问点给出的范例仅供您参考拓展思维使用,选修4-4数学学问点:该篇文章建议您自主创作。

    注意事项

    本文(选修44数学知识点.docx)为本站会员(黑***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开