汕尾市重点中学2023年高三二诊模拟考试数学试卷含解析.doc
2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”现已知当时,该命题不成立,那么( )A当时,该命题不成立B当时,该命题成立C当时,该命题不成立D当时,该命题成立2已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A内切B相交C外切D相离3已知向量,且,则( )ABC1D24某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm3ABCD5函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 6已知函数,其中,其图象关于直线对称,对满足的,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()ABCD7某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )A324B522C535D5788在明代程大位所著的算法统宗中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样马吃了牛的一半,羊吃了马的一半”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同马吃的青苗是牛的一半,羊吃的青苗是马的一半问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )ABCD9在直角坐标系中,已知A(1,0),B(4,0),若直线x+my1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )AB3CD10已知是定义是上的奇函数,满足,当时, ,则函数在区间上的零点个数是( )A3B5C7D911已知等差数列的前项和为,若,则等差数列公差()A2BC3D412我国南北朝时的数学著作张邱建算经有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )A多1斤B少1斤C多斤D少斤二、填空题:本题共4小题,每小题5分,共20分。13已知,为正实数,且,则的最小值为_.14三所学校举行高三联考,三所学校参加联考的人数分别为160,240,400,为调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在学校抽取的数学成绩的份数为30,则抽取的样本容量为_.15已知,(,),则_16已知为抛物线:的焦点,过作两条互相垂直的直线,直线与交于、两点,直线与交于、两点,则的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲已知函数的最大值为3,其中(1)求的值;(2)若,求证:18(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在2544岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好3005.开放且包容250合计10001000(1)根据以上数据,预测400万2544岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.0500.0100.001k3.8416.63510.82819(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.20(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作设(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值21(12分)已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长22(10分)已知函数(1)若,证明:当时,;(2)若在只有一个零点,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.2、B【解析】化简圆到直线的距离 ,又 两圆相交. 选B3、A【解析】根据向量垂直的坐标表示列方程,解方程求得的值.【详解】由于向量,且,所以解得.故选:A【点睛】本小题主要考查向量垂直的坐标表示,属于基础题.4、D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+12×1=(6+1.5)cm1故答案为6+1.5点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可5、D【解析】由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果6、B【解析】根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,其图像关于直线对称,对满足的,有,.再根据其图像关于直线对称,可得,.,.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.7、D【解析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.8、D【解析】设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,.故选:D.【点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.9、D【解析】设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或.故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.10、D【解析】根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得 ,利用周期性可得函数在区间上的零点个数【详解】是定义是上的奇函数,满足, ,可得,函数的周期为3,当时, ,令,则,解得或1,又函数是定义域为的奇函数,在区间上,有由,取,得 ,得,又函数是周期为3的周期函数,方程=0在区间上的解有 共9个,故选D【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题11、C【解析】根据等差数列的求和公式即可得出【详解】a1=12,S5=90,5×12+ d=90,解得d=1故选C【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题12、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列 则 由等差数列的性质得 ,故选C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.14、【解析】某层抽取的人数等于该层的总人数乘以抽样比.【详解】设抽取的样本容量为x,由已知,解得.故答案为:【点睛】本题考查随机抽样中的分层抽样,考查学生基本的运算能力,是一道容易题.15、【解析】先利用倍角公式及差角公式把已知条件化简可得,平方可得.【详解】,则,平方可得故答案为:.【点睛】本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.16、16.【解析】由题意可知抛物线的焦点,准线为设直线的解析式为直线互相垂直的斜率为与抛物线的方程联立,消去得设点由跟与系数的关系得,同理根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离,同理,当且仅当时取等号.故答案为16点睛:(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关利用定义可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径;(2)圆锥曲线中的最值问题,可利用基本不等式求解,但要注意不等式成立的条件三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab1,再构造函数利用导数判断单调性求出最小值可证【详解】(1),. 当时,取得最大值. . (2)由(),得,. ,当且仅当时等号成立,. 令,.则在上单调递减. 当时,.【点睛】本题考查了绝对值不等式的解法,属中档题本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.18、(1)(万)(2)(3)填表见解析;有的把握认为性别与“自然环境”或“人文环境”的选择有关【解析】(1)在1000个样本中选择“创业氛围好”来A城市发展的有300个,根据频率公式即可求得结果.(2) 由分层抽样的知识可得,抽取6人中,4人选择“森林城市,空气清新”,2人选择“降水充足,气候怡人”求出对应的基本事件数,即可求得结果.(3)计算的值,对照临界值表可得答案.【详解】(1)(万)(2)从所抽取选择“自然环境”作为来A城市发展理由的300人中,利用分层抽样的方法抽取6人,其中4人是选择“森林城市,空气清新”,2人是选择“降水充足,气候怡人”.记事件A为选出的3人中至少有2人选择“森林城市,空气清新”,则,.(3)列联表如下自然环境人文环境合计男100400500女200300500合计3007001000,所以有的把握认为性别与“自然环境”或“人文环境”的选择有关.【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、考查学生的综合分析与计算能力,难度较易.19、(1);(2)见解析.【解析】(1)设切点坐标为,然后根据可解得实数的值;(2)令,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.【详解】(1),设曲线与轴相切于点,则,即,解得.所以,当时,轴为曲线的切线;(2)令,则,由,得.当时,此时,函数为增函数;当时,此时,函数为减函数.,.当,即当时,函数有一个零点;当,即当时,函数有两个零点;当,即当时,函数有三个零点;当,即当时,函数有两个零点;当,即当时,函数只有一个零点.综上所述,当或时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点.【点睛】本题考查了利用导数的几何意义研究切线方程和利用导数研究函数的单调性与极值,关键是分类讨论思想的应用,属难题20、(1),;(2)米.【解析】(1) 过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可.(2)根据(1)有,再设,求导分析函数的单调性与最值即可.【详解】解:过点作于点 则,在中,由正弦定理得:, ,因为,化简得,令,且,因为,故令即,记,当时,单调递增;当时,单调递减,又, 当时,取最大值,此时,的最大值为米【点睛】本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.21、(1)或(2)【解析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.【详解】解: (1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即,解得直线的方程为直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.22、(1)见解析;(2)【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式;(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.详解:(1)当时,等价于设函数,则当时,所以在单调递减而,故当时,即(2)设函数在只有一个零点当且仅当在只有一个零点(i)当时,没有零点;(ii)当时,当时,;当时,所以在单调递减,在单调递增故是在的最小值若,即,在没有零点;若,即,在只有一个零点;若,即,由于,所以在有一个零点,由(1)知,当时,所以故在有一个零点,因此在有两个零点综上,在只有一个零点时,点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.