江苏省丹阳三中学、云阳校2022-2023学年中考适应性考试数学试题含解析.doc
-
资源ID:88303971
资源大小:783.50KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省丹阳三中学、云阳校2022-2023学年中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )A11;B6;C3;D12下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个A4B3C2D13若正比例函数ymx(m是常数,m0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A2B2C4D44下列图案中,既是中心对称图形,又是轴对称图形的是()ABCD5如图,在ABC中,EFBC,AB=3AE,若S四边形BCFE=16,则SABC=()A16B18C20D246用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方程( )ABCD7下列四个几何体,正视图与其它三个不同的几何体是()ABCD8计算6m3÷(3m2)的结果是()A3mB2mC2mD3m9如图,点P是菱形ABCD边上的一动点,它从点A出发沿在ABCD路径匀速运动到点D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A B C D10某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .12如图,在每个小正方形的边长为1的网格中,A,B为格点()AB的长等于_()请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且ABC的面积等于,并简要说明点C的位置是如何找到的_132018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_人14正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x的函数关系式为_15图,A,B是反比例函数y=图象上的两点,过点A作ACy轴,垂足为C,AC交OB于点D若D为OB的中点,AOD的面积为3,则k的值为_16在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A,则cosAOA=_三、解答题(共8题,共72分)17(8分)直角三角形ABC中,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F求证:;若,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积18(8分) ( 1)计算: 4sin31°+(2115)1(3)2(2)先化简,再求值:1,其中x、y满足|x2|+(2xy3)2=119(8分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?20(8分)如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t用含t的代数式表示:AP= ,AQ= 当以A,P,Q为顶点的三角形与ABC相似时,求运动时间是多少?21(8分)如图,ABC中AB=AC,请你利用尺规在BC边上求一点P,使ABCPAC不写画法,(保留作图痕迹).22(10分) “食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率23(12分)如图,在ABC中,AB=AC,以AB为直径的O分别交BC,AC于点D,E,DGAC于点G,交AB的延长线于点F(1)求证:直线FG是O的切线;(2)若AC=10,cosA=,求CG的长24边长为6的等边ABC 中,点D ,E 分别在AC ,BC 边上,DEAB,EC 2如图1,将DEC 沿射线EC 方向平移,得到DEC,边DE与AC 的交点为M ,边CD与ACC的角平分线交于点N.当CC多大时,四边形MCND为菱形?并说明理由如图2,将DEC 绕点C 旋转(0°<<360°),得到D EC,连接AD,BE.边DE的中点为P.在旋转过程中,AD和BE有怎样的数量关系?并说明理由;连接AP ,当AP 最大时,求AD的值(结果保留根号)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,上述四个数中,只有D选项中的1符合要求.故选D.点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.2、C【解析】四边相等的四边形一定是菱形,正确;顺次连接矩形各边中点形成的四边形一定是菱形,错误;对角线相等的平行四边形才是矩形,错误;经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,正确;其中正确的有2个,故选C考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定3、B【解析】利用待定系数法求出m,再结合函数的性质即可解决问题【详解】解:ymx(m是常数,m0)的图象经过点A(m,4),m24,m±2,y的值随x值的增大而减小,m0,m2,故选:B【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型4、B【解析】根据轴对称图形与中心对称图形的概念解答【详解】A不是轴对称图形,是中心对称图形;B是轴对称图形,是中心对称图形;C不是轴对称图形,也不是中心对称图形;D是轴对称图形,不是中心对称图形故选B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、B【解析】【分析】由EFBC,可证明AEFABC,利用相似三角形的性质即可求出SABC的值【详解】EFBC,AEFABC,AB=3AE,AE:AB=1:3,SAEF:SABC=1:9,设SAEF=x,S四边形BCFE=16,解得:x=2,SABC=18,故选B【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.6、C【解析】设用张铝片制作瓶身,则用张铝片制作瓶底,可作瓶身16x个,瓶底个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用张铝片制作瓶身,则用张铝片制作瓶底,依题意可列方程故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.7、C【解析】根据几何体的三视图画法先画出物体的正视图再解答.【详解】解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C【点睛】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.8、B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可【详解】6m3÷(3m2)=6÷(3)(m3÷m2)=2m故选B.9、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可【详解】分三种情况:当P在AB边上时,如图1,设菱形的高为h,y=APh,AP随x的增大而增大,h不变,y随x的增大而增大,故选项C不正确;当P在边BC上时,如图2,y=ADh,AD和h都不变,在这个过程中,y不变,故选项A不正确;当P在边CD上时,如图3,y=PDh,PD随x的增大而减小,h不变,y随x的增大而减小,P点从点A出发沿ABCD路径匀速运动到点D,P在三条线段上运动的时间相同,故选项D不正确,故选B【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出PAD的面积的表达式是解题的关键10、C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可详解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比二、填空题(本大题共6个小题,每小题3分,共18分)11、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90°,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3由翻折的性质,得BE=BE=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长为36或故答案为36或考点:3翻折变换(折叠问题);3分类讨论12、 取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求 【解析】()利用勾股定理计算即可;()取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【详解】解:()AB= =,故答案为()如图取格点P、N(使得SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求故答案为:取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【点睛】本题考查作图应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型13、4.02×1【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:40.2万=4.02×1,故答案为:4.02×1【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值14、y=2x26x+2【解析】由AAS证明DHEAEF,得出DE=AF=x,DH=AE=1-x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式【详解】如图所示:四边形ABCD是边长为1的正方形,A=D=20°,AD=11+2=20°,四边形EFGH为正方形,HEF=20°,EH=EF1+1=20°,2=1,在AHE与BEF中,DHEAEF(AAS),DE=AF=x,DH=AE=1-x,在RtAHE中,由勾股定理得:EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;即y=2x2-6x+2(0x1),故答案为y=2x2-6x+2【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键15、1【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据AOD的面积为3,列出关系式求得k的值解:设点D坐标为(a,b),点D为OB的中点,点B的坐标为(2a,2b),k=4ab,又ACy轴,A在反比例函数图象上,A的坐标为(4a,b),AD=4aa=3a,AOD的面积为3,×3a×b=3,ab=2,k=4ab=4×2=1故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据AOD的面积为1列出关系式是解题的关键16、【解析】依据点A(1,2)在x轴上的正投影为点A,即可得到A'O=1,AA'=2,AO=,进而得出cosAOA的值【详解】如图所示,点A(1,2)在x轴上的正投影为点A,A'O=1,AA'=2,AO=,cosAOA=,故答案为:【点睛】本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律三、解答题(共8题,共72分)17、(1)证明见解析;(2)补图见解析;【解析】根据等腰三角形的性质得到,等量代换得到,根据余角的性质即可得到结论;根据平行线的判定定理得到ADBG,推出四边形ABGD是平行四边形,得到平行四边形ABGD是菱形,设AB=BG=GD=AD=x,解直角三角形得到 ,过点B作 于H,根据平行四边形的面积公式即可得到结论【详解】解:,;补全图形,如图所示:,且,四边形ABGD是平行四边形,平行四边形ABGD是菱形,设,过点B作于H,故答案为(1)证明见解析;(2)补图见解析;【点睛】本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线18、 (1)-7;(2) ,.【解析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】(1)原式=34×+19=7;(2)原式=1 ×=1 = =;|x2|+(2xy3)2=1,解得:x=2,y=1,当x=2,y=1时,原式=.故答案为(1)-7;(2);.【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.19、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.【解析】(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.【详解】解:(1)设A型足球x个,则B型足球(100-x)个, 40x +60(100-x)=5200 ,解得:x=40 , 100-x=100-40=60个,答:A型足球进了40个,B型足球进了60个(2)设A型足球x个,则B型足球(100-x)个,100-x ,解得:x60 ,设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,k=-20,y随x的增大而减小,当x=60时,y最小=4800元.【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.20、(1)AP=2t,AQ=163t;(2)运动时间为秒或1秒【解析】(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论(1)当APQABC时;(2)当APQACB时利用相似三角形的性质求解即可【详解】(1)AP=2t,AQ=163t(2)PAQ=BAC,当时,APQABC,即,解得 当时,APQACB,即,解得t=1运动时间为秒或1秒【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.21、见解析【解析】根据题意作CBA=CAP即可使得ABCPAC.【详解】如图,作CBA=CAP,P点为所求. 【点睛】此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.22、(1)60, 90°;(2)补图见解析;(3)300;(4).【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案详解:(1)60;90°.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比23、(3)证明见试题解析;(3)3【解析】试题分析:(3)先得出ODAC,有ODG=DGC,再由DGAC,得到DGC=90°,ODG=90°,得出ODFG,即可得出直线FG是O的切线(3)先得出ODFAGF,再由cosA=,得出cosDOF=;然后求出OF、AF的值,即可求出AG、CG的值试题解析:(3)如图3,连接OD,AB=AC,C=ABC,OD=OB,ABC=ODB,ODB=C,ODAC,ODG=DGC,DGAC,DGC=90°,ODG=90°,ODFG,OD是O的半径,直线FG是O的切线;(3)如图3,AB=AC=30,AB是O的直径,OA=OD=30÷3=5,由(3),可得:ODFG,ODAC,ODF=90°,DOF=A,在ODF和AGF中,DOF=A,F=F,ODFAGF,cosA=,cosDOF=,OF=,AF=AO+OF=,解得AG=7,CG=ACAG=307=3,即CG的长是3考点:3切线的判定;3相似三角形的判定与性质;3综合题24、 (1) 当CC'=时,四边形MCND'是菱形,理由见解析;(2)AD'=BE',理由见解析;【解析】(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)分两种情况,利用旋转的性质,即可判断出ACDBCE'即可得出结论;先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论【详解】(1)当CC'=时,四边形MCND'是菱形理由:由平移的性质得,CDC'D',DED'E',ABC是等边三角形,B=ACB=60°,ACC'=180°-ACB=120°,CN是ACC'的角平分线,D'E'C'=ACC'=60°=B,D'E'C'=NCC',D'E'CN,四边形MCND'是平行四边形,ME'C'=MCE'=60°,NCC'=NC'C=60°,MCE'和NCC'是等边三角形,MC=CE',NC=CC',E'C'=2,四边形MCND'是菱形,CN=CM,CC'=E'C'=;(2)AD'=BE',理由:当180°时,由旋转的性质得,ACD'=BCE',由(1)知,AC=BC,CD'=CE',ACD'BCE', AD'=BE',当=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'如图连接CP,在ACP中,由三角形三边关系得,APAC+CP,当点A,C,P三点共线时,AP最大,如图1,在D'CE'中,由P为D'E的中点,得APD'E',PD'=,CP=3,AP=6+3=9,在RtAPD'中,由勾股定理得,AD'=【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大