江苏省南通市崇川校2022-2023学年中考数学四模试卷含解析.doc
-
资源ID:88304035
资源大小:729.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省南通市崇川校2022-2023学年中考数学四模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表 节约用水量(单位:吨)11.11.411.5家庭数46531这组数据的中位数和众数分别是( )A1.1,1.1;B1.4,1.1;C1.3,1.4;D1.3,1.126的倒数是()ABC6D632018的绝对值是( )A±2018B2018CD20184某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A10B11C12D135如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CEx轴交双曲线于点E,连接BE,则BCE的面积为()A5B6C7D86数据4,8,4,6,3的众数和平均数分别是( )A5,4B8,5C6,5D4,57如图,A、B、C、D是O上的四点,BD为O的直径,若四边形ABCO是平行四边形,则ADB的大小为()A30°B45°C60°D75°8如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24cmD28cm9若关于x的一元二次方程(k1)x2+2x2=0有两个不相等的实数根,则k的取值范围是()AkBkCk且k1Dk且k110如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD二、填空题(共7小题,每小题3分,满分21分)11若关于的不等式组无解, 则的取值范围是 _.12如图,在边长为1正方形ABCD中,点P是边AD上的动点,将PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ则当BQ+DQ的值最小时,tanABP_13如图所示,在四边形ABCD中,ADAB,C=110°,它的一个外角ADE=60°,则B的大小是_14写出经过点(0,0),(2,0)的一个二次函数的解析式_(写一个即可)15二次函数的图象如图所示,给出下列说法:;方程的根为,;当时,随值的增大而增大;当时,其中,正确的说法有_(请写出所有正确说法的序号)16计算:(2a3)2=_17如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图位置,继续绕右下角的顶点按顺时针方向旋转90°至图位置,以此类推,这样连续旋转2017次若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_三、解答题(共7小题,满分69分)18(10分)在平面直角坐标系中,ABC的顶点坐标是A(2,3),B(4,1), C(2,0)点P(m,n)为ABC内一点,平移ABC得到A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处(1)画出A1B1C1(2)将ABC绕坐标点C逆时针旋转90°得到A2B2C,画出A2B2C;(3)在(2)的条件下求BC扫过的面积19(5分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法: 教师讲,学生听 教师让学生自己做 教师引导学生画图发现规律 教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种他随机抽取了60名学生的调查问卷,统计如图(1) 请将条形统计图补充完整;(2) 计算扇形统计图中方法的圆心角的度数是 ;(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?20(8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整)下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由21(10分)已知:如图,AB=AE,1=2,B=E求证:BC=ED22(10分)如图,已知抛物线y=ax22ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由23(12分)校园手机现象已经受到社会的广泛关注某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查并将调查数据作出如下不完整的整理;看法频数频率赞成5无所谓0.1反对400.8(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数24(14分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个详解:这组数据的中位数是; 这组数据的众数是1.1 故选D点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数2、A【解析】解:6的倒数是故选A3、D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:2018的绝对值是2018,即故选D点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.4、B【解析】根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决【详解】由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B【点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数5、C【解析】作辅助线,构建全等三角形:过D作GHx轴,过A作AGGH,过B作BMHC于M,证明AGDDHCCMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论【详解】解:过D作GHx轴,过A作AGGH,过B作BMHC于M,设D(x,),四边形ABCD是正方形,ADCDBC,ADCDCB90°,易得AGDDHCCMB(AAS),AGDHx1,DGBM,GQ1,DQ,DHAGx1,由QG+DQBMDQ+DH得:11x,解得x2,D(2,3),CHDGBM14,AGDH1x1,点E的纵坐标为4,当y4时,x,E(,4),EH2,CECHHE4,SCEBCEBM××47;故选C【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题6、D【解析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】4出现了2次,出现的次数最多,众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选D7、A【解析】解:四边形ABCO是平行四边形,且OA=OC,四边形ABCO是菱形,AB=OA=OB,OAB是等边三角形,AOB=60°,BD是O的直径,点B、D、O在同一直线上,ADB=AOB=30°故选A8、C【解析】首先根据平行线的性质以及折叠的性质证明EAC=DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(cm)故选C【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键9、C【解析】根据题意得k-10且=2²-4(k-1)×(-2)0,解得:k且k1故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a0)的根的判别式=b²-4ac,关键是熟练掌握:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根10、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O×,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得【详解】,解得:xa+3,解得:x1根据题意得:a+31,解得:a-2故答案是:a-2【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤.12、1【解析】连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQx解直角三角形得到AP1,根据三角函数的定义即可得到结论【详解】如图:连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQxPDQ45°,PDPQ,即1x,x1,AP1,tanABP1,故答案为:1【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称最短路线问题,正确的理解题意是解题的关键13、40°【解析】【分析】根据外角的概念求出ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】ADE=60°,ADC=120°,ADAB,DAB=90°,B=360°CADCA=40°,故答案为40°【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键14、yx2+2x(答案不唯一)【解析】设此二次函数的解析式为yax(x+2),令a1即可【详解】抛物线过点(0,0),(2,0),可设此二次函数的解析式为yax(x+2),把a1代入,得yx2+2x故答案为yx2+2x(答案不唯一)【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一15、【解析】根据抛物线的对称轴判断,根据抛物线与x轴的交点坐标判断,根据函数图象判断【详解】解:对称轴是x=-=1,ab0,正确;二次函数y=ax2+bx+c的图象与x轴的交点坐标为(-1,0)、(3,0),方程x2+bx+c=0的根为x1=-1,x2=3,正确;当x=1时,y0,a+b+c0,错误;由图象可知,当x1时,y随x值的增大而增大,正确;当y0时,x-1或x3,错误,故答案为【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定16、4a1【解析】根据积的乘方运算法则进行运算即可.【详解】原式 故答案为【点睛】考查积的乘方,掌握运算法则是解题的关键.17、【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可详解:AB=4,BC=3,AC=BD=5,转动一次A的路线长是: 转动第二次的路线长是: 转动第三次的路线长是: 转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为: 2017÷4=5041,顶点A转动四次经过的路线长为: 故答案为点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析;(3).【解析】(1)根据P(m,n)移到P(m+6,n+1)可知ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形即可;(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.【详解】解:(1)平移ABC得到A1B1C1,点P(m,n)移到P(m+6,n+1)处,ABC向右平移6个单位,向上平移了一个单位,A1(4,4),B1(2,0),C1(8,1);顺次连接A1,B1,C1三点得到所求的A1B1C1(2)如图所示:A2B2C即为所求三角形.(3)BC的长为: BC扫过的面积【点睛】本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.19、解:(1)见解析; (2) 108°;(3) 最喜欢方法,约有189人.【解析】(1)由题意可知:喜欢方法的学生有60-6-18-27=9(人);(2)求方法的圆心角应先求所占比值,再乘以360°;(3)根据条形的高低可判断喜欢方法的学生最多,人数应该等于总人数乘以喜欢方法所占的比例;【详解】(1)方法人数为6061827=9(人);补条形图如图: (2)方法的圆心角为 故答案为108°(3)由图可以看出喜欢方法的学生最多,人数为 (人);【点睛】考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.20、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题【详解】(1)服装项目的权数是:120%30%40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,80.578.5,李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键21、证明见解析.【解析】由1=2可得CAB =DAE,再根据ASA证明ABCAED,即可得出答案.【详解】1=2,1+BAD=2+BAD,CAB=DAE,在ABC与AED中,B=E,AB=AE,CAB=DAE,ABCAED,BC=ED.22、(1)y=x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2,0),Q1(2+,0),Q4(,0),Q5(,0).【解析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标(1)此题要分三种情况讨论:点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;M、N在x轴下方,且以N为直角顶点时,方法同【详解】解:(1)由y=ax22ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(1,0);OC=1OA,C(0,1);依题意有:,解得;y=x2+2x+1(2)存在DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),C(0,1),P(2,1),CP=2,D(1,4),CD=2,由此时CDPD,根据垂线段最短可得,PC不可能与CD相等;PC=PD时,CP22=(1y)2+x2,DP22=(x1)2+(4y)2(1y)2+x2=(x1)2+(4y)2将y=x2+2x+1代入可得:, ;P2(,)综上所述,P(2,1)或(,)(1)存在,且Q1(1,0),Q2(2,0),Q1(2+,0),Q4(,0),Q5(,0);若Q是直角顶点,由对称性可直接得Q1(1,0);若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x1),MN=2Q1O2=2(1x),Q2MN为等腰直角三角形;y=2(1x)即x2+2x+1=2(1x);x1,Q2(,0);由对称性可得Q1(,0);若N是直角顶点,且M、N在x轴下方时;同理设Q4(x,y),(x1)Q1Q4=1x,而Q4N=2(Q1Q4),y为负,y=2(1x),(x2+2x+1)=2(1x),x1,x=,Q4(-,0);由对称性可得Q5(+2,0)【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.23、(1)50;(2)见解析;(3)2400.【解析】(1)用反对的频数除以反对的频率得到调查的总人数;(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;(3)根据题意列式计算即可【详解】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.850人;故答案为:50;(2)无所谓的频数为:505405人,赞成的频率为:10.10.80.1;看法频数频率赞成50.1无所谓50.1反对400.8统计图为:(3)0.8×30002400人,答:该校持“反对”态度的学生人数是2400人【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据24、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.【解析】(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解【详解】(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,由题意,得,解得:答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,由题意,得,解得:41m1m是整数,m=42,43,2则90-m=48,47,3答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件【点睛】本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系