欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    江苏省南京市六校联合体2022-2023学年高三最后一卷数学试卷含解析.doc

    • 资源ID:88304107       资源大小:3.57MB        全文页数:20页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    江苏省南京市六校联合体2022-2023学年高三最后一卷数学试卷含解析.doc

    2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的部分图象如图所示,已知,函数的图象可由图象向右平移个单位长度而得到,则函数的解析式为( )ABCD2已知向量,则是的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充要条件3我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( )ABCD以上都不对4函数在区间上的大致图象如图所示,则可能是( )ABCD5 “”是“,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件6如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )A4BC2D7已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()AB2CD8“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员面向全社会的优质平台,现日益成为老百姓了解国家动态紧跟时代脉搏的热门该款软件主要设有“阅读文章”“视听学习”两个学习模块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题模块某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( )A60B192C240D4329已知,则( )ABCD10设,且,则( )ABCD11函数与的图象上存在关于直线对称的点,则的取值范围是( )ABCD12设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,且,若恒成立,则实数的取值范围是_14函数的定义域为_.15在中,角A,B,C的对边分别为a,b,c,且,则_.16函数在的零点个数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.18(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.19(12分)在三角形中,角,的对边分别为,若.()求角;()若,求.20(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.21(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.22(10分)等差数列中,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,成等比数列,若有,请求出的值;若没有,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由图根据三角函数图像的对称性可得,利用周期公式可得,再根据图像过,即可求出,再利用三角函数的平移变换即可求解.【详解】由图像可知,即,所以,解得,又,所以,由,所以或,又,所以,所以,即,因为函数的图象由图象向右平移个单位长度而得到,所以.故选:A【点睛】本题考查了由图像求三角函数的解析式、三角函数图像的平移伸缩变换,需掌握三角形函数的平移伸缩变换原则,属于基础题.2、A【解析】向量,则,即,或者-1,判断出即可【详解】解:向量,则,即,或者-1,所以是或者的充分不必要条件,故选:A【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.3、A【解析】首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,共种情况,故随机选出两个不同的数,其和等于的概率故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.4、B【解析】根据特殊值及函数的单调性判断即可;【详解】解:当时,无意义,故排除A;又,则,故排除D;对于C,当时,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.5、B【解析】先求出满足的值,然后根据充分必要条件的定义判断【详解】由得,即, ,因此“”是“,”的必要不充分条件故选:B【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础解题时可根据条件与结论中参数的取值范围进行判断6、A【解析】由,两边平方后展开整理,即可求得,则的长可求【详解】解:,故选:【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题7、A【解析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【详解】由题图可知原ABC的高为AO,SABC×BC×OA×2×,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.8、C【解析】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法注意按“阅读文章”分类【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为故选:C【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法9、D【解析】令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,故单调递增:,当,设, ,又,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.10、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】 即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.11、C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题12、C【解析】根据线面平行或垂直的有关定理逐一判断即可.【详解】解:、也可能相交或异面,故错:因为,所以或,因为,所以,故对:或,故错:如图因为,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为, 所以,所以,故对.故选:C【点睛】考查线面平行或垂直的判断,基础题.二、填空题:本题共4小题,每小题5分,共20分。13、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值14、【解析】由题意得,解得定义域为15、【解析】利用正弦定理将边化角,即可容易求得结果.【详解】由正弦定理可知,即.故答案为:.【点睛】本题考查利用正弦定理实现边角互化,属基础题.16、【解析】求出的范围,再由函数值为零,得到的取值可得零点个数【详解】详解:由题可知,或解得,或故有3个零点【点睛】本题主要考查三角函数的性质和函数的零点,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)求出,分别以当,时,结合函数的单调性和最值判断零点的个数.(2)令,结合导数求出;同理可求出满足,从而可得,进而证明.【详解】解析:(1),当时,单调递减,此时有1个零点;当时,无零点;当时,由得,由得,在单调递减,在单调递增,在处取得最小值,若,则,此时没有零点;若,则,此时有1个零点;若,则,求导易得,此时在,上各有1个零点.综上可得时,没有零点,或时,有1个零点,时,有2个零点.(2)令,则,当时,;当时,.令,则,当时,当时,即.【点睛】本题考查了导数判断函数零点问题,考查了运用导数证明不等式问题,考查了分类的数学思想.本题的难点在于第二问不等式的证明中,合理设出函数,通过比较最值证明.18、(1)见解析;(2)【解析】(1)设,注意到在上单增,再利用零点存在性定理即可解决;(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.【详解】(1)由已知,所以,设,当时,单调递增,而,且在上图象连续不断.所以在上有唯一零点,当时,;当时,;在单调递减,在单调递增,故在区间上存在唯一的极小值点,即在区间上存在唯一的极小值点;(2)设,在单调递增,即,从而,因为函数在上单调递减,在上恒成立,令,在上单调递减,当时,则在上单调递减,符合题意.当时,在上单调递减,所以一定存在,当时,在上单调递增,与题意不符,舍去.综上,的取值范围是【点睛】本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.19、()()8【解析】()由余弦定理可得,即可求出A,()根据同角的三角函数的关系和两角和的正弦公式和正弦定理即可求出.【详解】()由余弦定理,所以,所以,即,因为,所以;()因为,所以,因为,由正弦定理得,所以.【点睛】本题考查利用正弦定理与余弦定理解三角形,属于简单题.20、(1);(2)或【解析】(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,设切点为,故,故,则;令,故当时,当时,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.21、(1)见解析(2)【解析】(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2) 过作交于,由为的中点,结合已知有平面.则,可求得.建立坐标系分别求得面的法向量,平面的一个法向量为,利用公式即可求得结果.【详解】(1)证明:平面,平面,,又四边形为正方形,.又、平面,且,平面.中,为的中点,.又、平面,平面.平面,平面平面.(2)解:过作交于,如图为的中点,.又平面,平面.,.所以,又、两两互相垂直,以、为坐标轴建立如图所示的空间直角坐标系.,设平面的法向量,则,即.令,则,.平面的一个法向量为.二面角的余弦值为.【点睛】本题考查面面垂直的证明方法,考查了空间线线、线面、面面位置关系,考查利用向量法求二面角的方法,难度一般.22、(1)见解析,或;(2)存在,.【解析】(1)满足题意有两种组合:,分别计算即可;(2)由(1)分别讨论两种情况,假设存在正整数,使得,成等比数列,即,解方程是否存在正整数解即可.【详解】(1)由题意可知:有两种组合满足条件:,此时等差数列,所以其通项公式为.,此时等差数列,所以其通项公式为.(2)若选择,.则.若,成等比数列,则,即,整理,得,即,此方程无正整数解,故不存在正整数,使,成等比数列.若选则,则,若,成等比数列,则,即,整理得,因为为正整数,所以.故存在正整数,使,成等比数列.【点睛】本题考查等差数列的通项公式及前n项和,涉及到等比数列的性质,是一道中档题.

    注意事项

    本文(江苏省南京市六校联合体2022-2023学年高三最后一卷数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开