武汉市汉阳区重点中学2023年中考数学模拟预测题含解析.doc
-
资源ID:88304161
资源大小:1.03MB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
武汉市汉阳区重点中学2023年中考数学模拟预测题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,点E在DBC的边DB上,点A在DBC内部,DAE=BAC=90°,AD=AE,AB=AC给出下列结论:BD=CE;ABD+ECB=45°;BDCE;BE1=1(AD1+AB1)CD1其中正确的是()ABCD2函数y=的自变量x的取值范围是( )Ax2Bx2Cx2Dx23分式有意义,则x的取值范围是()Ax2Bx0Cx2Dx74如图,在中, ,将折叠,使点落在边上的点处, 为折痕,若,则的值为( )ABCD5下列运算正确的是( )A=x5BC·=D3+2 6如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD7如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )A2个B3个C4个D5个8如图,OAC和BAD都是等腰直角三角形,ACO=ADB=90°,反比例函数y=在第一象限的图象经过点B,则OAC与BAD的面积之差SOACSBAD为()A36B12C6D39二次函数y=(x1)2+5,当mxn且mn0时,y的最小值为2m,最大值为2n,则m+n的值为( )AB2CD10在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线二、填空题(共7小题,每小题3分,满分21分)11阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是_12如图,ABCD中,对角线AC,BD相交于点O,且ACBD,请你添加一个适当的条件_,使ABCD成为正方形 13如图,PA、PB是O的切线,A、B为切点,AC是O的直径,P= 40°,则BAC= .14把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上若AB=,则CD=_15方程的两个根为、,则的值等于_16如果两圆的半径之比为,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d的取值范围是_.17用配方法解方程3x26x+1=0,则方程可变形为(x_)2=_三、解答题(共7小题,满分69分)18(10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,2)求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论19(5分)如果a2+2a-1=0,求代数式的值.20(8分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)21(10分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点(1)若点的横坐标为,求的面积;(用含的式子表示)(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由22(10分)如图,一次函数的图象与反比例函数的图象交于,B 两点(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围23(12分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24(14分)已知,抛物线(为常数)(1)抛物线的顶点坐标为( , )(用含的代数式表示);(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:只要证明DABEAC,利用全等三角形的性质即可一一判断;详解:DAE=BAC=90°,DAB=EACAD=AE,AB=AC,DABEAC,BD=CE,ABD=ECA,故正确,ABD+ECB=ECA+ECB=ACB=45°,故正确,ECB+EBC=ABD+ECB+ABC=45°+45°=90°,CEB=90°,即CEBD,故正确,BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1故正确,故选A点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题2、D【解析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:函数y=有意义,x-20,即x2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.3、A【解析】直接利用分式有意义则分母不为零进而得出答案【详解】解:分式有意义,则x10,解得:x1故选:A【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.4、B【解析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.【详解】解:由折叠性质可知:AE=DE=3CE=AC-AE=4-3=1在RtCED中,CD= 故选:B【点睛】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.5、B【解析】根据幂的运算法则及整式的加减运算即可判断.【详解】A. =x6,故错误;B. ,正确;C. ·=,故错误; D. 3+2 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.6、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O×,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键7、C【解析】分为三种情况:AP=OP,AP=OA,OA=OP,分别画出即可【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解8、D【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论 解:设OAC和BAD的直角边长分别为a、b, 则点B的坐标为(a+b,ab)点B在反比例函数的第一象限图象上, (a+b)×(ab)=a2b2=1 SOACSBAD=a2b2=(a2b2)=×1=2 故选D点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2b2的值解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键9、D【解析】由mxn和mn0知m0,n0,据此得最小值为1m为负数,最大值为1n为正数将最大值为1n分两种情况,顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出【详解】解:二次函数y=(x1)1+5的大致图象如下:当m0xn1时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=n时y取最大值,即1n=(n1)1+5, 解得:n=1或n=1(均不合题意,舍去);当m0x1n时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=1时y取最大值,即1n=(11)1+5, 解得:n=, 或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=,m=,m0,此种情形不合题意,所以m+n=1+=10、C【解析】A、错误这个四边形有可能是等腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的条件,无法证明相等的一组对边平行故选C二、填空题(共7小题,每小题3分,满分21分)11、两点确定一条直线;同圆或等圆中半径相等【解析】根据尺规作图的方法,两点之间确定一条直线的原理即可解题.【详解】解:两点之间确定一条直线,CD和AB都是圆的半径,AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.【点睛】本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.12、BAD=90° (不唯一)【解析】根据正方形的判定定理添加条件即可.【详解】解:平行四边形 ABCD的对角线AC与BD相交于点O,且ACBD,四边形ABCD是菱形,当BAD=90°时,四边形ABCD为正方形.故答案为:BAD=90°.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.13、20°【解析】根据切线的性质可知PAC90°,由切线长定理得PAPB,P40°,求出PAB的度数,用PACPAB得到BAC的度数【详解】解:PA是O的切线,AC是O的直径,PAC90°PA,PB是O的切线,PAPBP40°,PAB(180°P)÷2(180°40°)÷270°,BACPACPAB90°70°20°故答案为20°【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数14、 【解析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论【详解】如图,过点A作AFBC于F,在RtABC中,B=45°,BC=AB=2,BF=AF=AB=1,两个同样大小的含45°角的三角尺,AD=BC=2,在RtADF中,根据勾股定理得,DF=CD=BF+DF-BC=1+-2=-1,故答案为-1【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键15、1【解析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得,所以=1故答案为1【点睛】本题考查了根与系数的关系:若、是一元二次方程(a0)的两根时,16、.【解析】先根据比例式设两圆半径分别为,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.【详解】解:设两圆半径分别为,由题意,得3x-2x=3,解得,则两圆半径分别为,所以当这两圆相交时,圆心距d的取值范围是,即,故答案为.【点睛】本题考查了圆和圆的位置与两圆的圆心距、半径的数量之间的关系,熟练掌握圆心距与圆位置关系的数量关系是解决本题的关键.17、1 【解析】原方程为3x26x+1=0,二次项系数化为1,得x22x=,即x22x+1=+1,所以(x1)2= .故答案为:1,.三、解答题(共7小题,满分69分)18、(1)(2)1x0或x1(3)四边形OABC是平行四边形;理由见解析【解析】(1)设反比例函数的解析式为(k0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CBOA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为(k0)A(m,2)在y=2x上,2=2m,解得m=1A(1,2)又点A在上,解得k=2,反比例函数的解析式为(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为1x0或x1(3)四边形OABC是菱形证明如下: A(1,2),由题意知:CBOA且CB=,CB=OA四边形OABC是平行四边形C(2,n)在上,C(2,1)OC=OA平行四边形OABC是菱形19、1 【解析】=1.故答案为1.20、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(7525)海里【解析】(1)过点B作BHCA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在RtABH中,根据三角函数可求AH,进一步得到AD的长【详解】解:(1)过点B作BHCA交CA的延长线于点H,MBC60°,CBA30°,NAD30°,BAC120°,BCA180°BACCBA30°,BHBC×sinBCA150×75(海里)答:B点到直线CA的距离是75海里;(2)BD75海里,BH75海里,DH75(海里),BAH180°BAC60°,在RtABH中,tanBAH,AH25,ADDHAH(7525)(海里)答:执法船从A到D航行了(7525)海里【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键21、(1);(2)不能成为平行四边形,理由见解析【解析】(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PDx轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出MPD的面积;(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PDx轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PDPC,由此即可得出四边形BDMC不能成为平行四边形【详解】解:(1)点在直线上,点在的图像上,设,则记的面积为,(2)当点为中点时,其坐标为,直线在轴下方的部分沿轴翻折得表示的函数表达式是:,与不能互相平分,四边形不能成为平行四边形【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形22、(1);(2)或;【解析】(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围【详解】(1) 过点, ,反比例函数的解析式为;点在 上, ,一次函数过点, ,解得:一次函数解析式为;(2)由图可知,当或时,一次函数值大于反比例函数值【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式23、(1)当4x6时,w1=x2+12x35,当6x8时,w2=x2+7x23;(2)最快在第7个月可还清10万元的无息贷款【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价成本)×销售量费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,直线AB的解析式为:y=x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=x+5,工资及其他费作为:0.4×5+1=3万元,当4x6时,w1=(x4)(x+8)3=x2+12x35,当6x8时,w2=(x4)(x+5)3=x2+7x23;(2)当4x6时,w1=x2+12x35=(x6)2+1,当x=6时,w1取最大值是1,当6x8时,w2=x2+7x23=(x7)2+,当x=7时,w2取最大值是1.5,=6,即最快在第7个月可还清10万元的无息贷款点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高24、(1);(2)图象见解析,或;(3)【解析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求【详解】解:(1),抛物线的顶点的坐标为故答案为:(2)将代入抛物线的解析式得:解得:,抛物线的解析式为抛物线的大致图象如图所示:将代入得:,解得:或抛物线与反比例函数图象的交点坐标为或将代入得:,将代入得:,综上所述,反比例函数的表达式为或(3)设点的坐标为,则点的坐标为,的坐标为的长随的增大而减小矩形在其对称轴的左侧,抛物线的对称轴为, 当时,的长有最小值,的最小值的长度不变,当最小时,有最小值的最小值故答案为:【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键