江苏省宿迁市名校2023年中考联考数学试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有()A4个B5个C6个D7个2为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A中位数B众数C平均数D方差3已知二次函数的图象如图所示,则下列说法正确的是( )A0B0C0D04方程的解为( )Ax3Bx4Cx5Dx55已知二次函数的图象如图所示,则下列结论:ac>0;a-b+c<0; 当时,;,其中错误的结论有ABCD6在实数0,4中,最小的数是( )A0BCD47下列运算中,正确的是()A(a3)2=a5B(x)2÷x=xCa3(a)2=a5D(2x2)3=8x68如图,A(4,0),B(1,3),以OA、OB为边作OACB,反比例函数(k0)的图象经过点C则下列结论不正确的是()AOACB的面积为12B若y<3,则x>5C将OACB向上平移12个单位长度,点B落在反比例函数的图象上D将OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上9在同一直角坐标系中,二次函数y=x2与反比例函数y=(x0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令=x1+x2+x3,则的值为()A1 Bm Cm2 D10某市从今年1月1日起调整居民用水价格,每立方米水费上涨 小丽家去年12月份的水费是15元,而今年5月的水费则是10元已知小丽家今年5月的用水量比去年12月的用水量多5m1求该市今年居民用水的价格设去年居民用水价格为x元/m1,根据题意列方程,正确的是()ABCD11四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根首尾顺次相接都能组成一个三角形,则( )A组成的三角形中周长最小为9B组成的三角形中周长最小为10C组成的三角形中周长最大为19D组成的三角形中周长最大为1612当ab0时,yax2与yax+b的图象大致是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度若设原计划每天修路xm,则根据题意可得方程 14如图,每个小正方形边长为1,则ABC边AC上的高BD的长为_15我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺. 16方程的两个根为、,则的值等于_17如图,A、B是反比例函数y(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若SAOC1则k_18如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH若AB=8,AD=6,则四边形EFGH的周长等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20(6分)如图,抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PFx轴于点F,交直线CD于点E,设点P的横坐标为m(1)求抛物线解析式并求出点D的坐标;(2)连接PD,CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当CPE是等腰三角形时,请直接写出m的值21(6分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?22(8分)已知是关于的方程的一个根,则_23(8分)已知a2+2a=9,求的值24(10分)如图,已知ABC内接于O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F连接OC(1)若G=48°,求ACB的度数;(1)若AB=AE,求证:BAD=COF;(3)在(1)的条件下,连接OB,设AOB的面积为S1,ACF的面积为S1若tanCAF=,求的值 25(10分)解不等式组,并将它的解集在数轴上表示出来26(12分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率27(12分)先化简,再求代数式()÷的值,其中x=sin60°,y=tan30°参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】依据不等式组至少有两个整数解,即可得到a5,再根据存在以3,a,7为边的三角形,可得4a10,进而得出a的取值范围是5a10,即可得到a的整数解有4个【详解】解:解不等式,可得xa,解不等式,可得x4,不等式组至少有两个整数解,a5,又存在以3,a,7为边的三角形,4a10,a的取值范围是5a10,a的整数解有4个,故选:A【点睛】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了2、A【解析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数故选A点睛:本题主要考查了中位数,关键是掌握中位数定义3、B【解析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y0,确定a+b+c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y0,a+b+c0,D错误;故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定4、C【解析】方程两边同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,检验:当x=5时,(x-1)(x+3)0,所以x=5是原方程的解,故选C.5、C【解析】根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;根据自变量为-1时函数值,可得答案;根据观察函数图象的纵坐标,可得答案;根据对称轴,整理可得答案【详解】图象开口向下,得a0,图象与y轴的交点在x轴的上方,得c0,ac,故错误;由图象,得x=-1时,y0,即a-b+c0,故正确;由图象,得图象与y轴的交点在x轴的上方,即当x0时,y有大于零的部分,故错误;由对称轴,得x=-=1,解得b=-2a,2a+b=0故正确;故选D【点睛】考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点6、D【解析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】正数大于0和一切负数,只需比较-和-1的大小,|-|-1|,最小的数是-1故选D【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小7、D【解析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可【详解】(a3)2=a6,选项A不符合题意;(-x)2÷x=x,选项B不符合题意;a3(-a)2=a5,选项C不符合题意;(-2x2)3=-8x6,选项D符合题意故选D【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握8、B【解析】先根据平行四边形的性质得到点的坐标,再代入反比例函数(k0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.【详解】解:A(4,0),B(1,3), ,反比例函数(k0)的图象经过点,反比例函数解析式为.OACB的面积为,正确;当时,故错误;将OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.9、D【解析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.10、A【解析】解:设去年居民用水价格为x元/cm1,根据题意列方程:,故选A11、D【解析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3x7,即x=4或5或1当三边为3、4、1时,其周长为3+4+1=13;当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D【点睛】本题考查的是三角形三边关系,利用了分类讨论的思想掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键12、D【解析】ab0,a、b同号当a0,b0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a0,b0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求故选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、.【解析】试题解析:原计划用的时间为: 实际用的时间为: 可列方程为: 故答案为14、【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:SABC=×2×4=4,且SABC=ACBD=×5BD,×5BD=4,解得:BD=.考点:1.网格型问题;2.勾股定理;3.三角形的面积15、1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺)故答案为1考点:平面展开最短路径问题16、1【解析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得,所以=1故答案为1【点睛】本题考查了根与系数的关系:若、是一元二次方程(a0)的两根时,17、2【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E则ADBE,AD=2BE=,B、E分别是AC、DC的中点ADCBEC,BE:AD=1:2,EC:CD=1:2,EC=DE=a,OC=3a,又A(a, ),B(2a, ),SAOC=AD×CO=×3a× =1,解得:k=218、20.【解析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算解答:连接AC,BD在RtABD中,BD= 四边形ABCD是矩形,AC=BD=10, E、H分别是AB、AD的中点,EHBD,EF=BD=5,同理,FGBD,FG=BD=5,GHAC,GH=AC=5, 四边形EHGF为菱形,四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)3,补图详见解析;(2)【解析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占,故该班团员人数为:(人),则发4条箴言的人数为:(人),所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键20、(1)y=x2+2x+3,D点坐标为();(2)当m=时,CDP的面积存在最大值,最大值为;(3)m的值为 或 或【解析】(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到SPCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值【详解】(1)把A(1,0),C(0,3)分别代入y=x2+bx+c得,解得,抛物线的解析式为y=x2+2x+3;把C(0,3)代入y=x+n,解得n=3,直线CD的解析式为y=x+3,解方程组,解得 或,D点坐标为(,);(2)存在设P(m,m2+2m+3),则E(m,m+3),PE=m2+2m+3(m+3)=m2+m,SPCD=(m2+m)=m2+m=(m)2+,当m=时,CDP的面积存在最大值,最大值为;(3)当PC=PE时,m2+(m2+2m+33)2=(m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(m2+2m+33)2=m2+(m+33)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(m+33)2=(m2+m)2,解得m=(舍去)或m=,综上所述,m的值为或或【点睛】本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.21、(1)10,1;(2)【解析】(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可【详解】解:(1)图象过点, ,解得的顶点坐标为,当时,最大=1答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元(2)函数图象的对称轴为直线,可知点关于对称轴的对称点是,又函数图象开口向下,当时,答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质22、10【解析】利用一元二次方程的解的定义得到,再把 变形为,然后利用整体代入的方法计算 【详解】解:是关于的方程的一个根,故答案为 10 【点睛】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 23、,【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值试题解析:= = =, a2+2a=9,(a+1)2=1原式=24、(1)48°(1)证明见解析(3) 【解析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(1)先根据等腰三角形的性质得:ABE=AEB,再证明BCG=DAC,可得 ,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OGAB于G,证明COFOAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论【详解】(1)连接CD,AD是O的直径,ACD=90°,ACB+BCD=90°,ADCG,AFG=G+BAD=90°,BAD=BCD,ACB=G=48°;(1)AB=AE,ABE=AEB,ABC=G+BCG,AEB=ACB+DAC,由(1)得:G=ACB,BCG=DAC,AD是O的直径,ADPC,BAD=1DAC,COF=1DAC,BAD=COF;(3)过O作OGAB于G,设CF=x,tanCAF= ,AF=1x,OC=OA,由(1)得:COF=OAG,OFC=AGO=90°,COFOAG,OG=CF=x,AG=OF,设OF=a,则OA=OC=1xa,RtCOF中,CO1=CF1+OF1,(1xa)1=x1+a1,a=x,OF=AG=x,OA=OB,OGAB,AB=1AG=x,【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出ACB+BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题25、x1,解集表示在数轴上见解析【解析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集【详解】去分母,得:3x2(x1)3,去括号,得:3x2x+23,移项,得:3x2x32,合并同类项,得:x1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集26、(1)不可能事件;(2).【解析】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为考点:列表法与树状图法27、【解析】先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可【详解】原式 原式【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.