江苏省徐州市邳州市2023年中考数学适应性模拟试题含解析.doc
-
资源ID:88304291
资源大小:924KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省徐州市邳州市2023年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CDx轴,垂足为D,且OA=AD,则以下结论:;当0x3时,;如图,当x=3时,EF=;当x0时,随x的增大而增大,随x的增大而减小其中正确结论的个数是( )A1B2C3D42关于x的一元二次方程x22x+k+20有实数根,则k的取值范围在数轴上表示正确的是( )ABCD3由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )A4B5C6D74已知反比例函数y=,当1x3时,y的取值范围是()A0y1B1y2C2y1D6y25从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲21.5,S乙22.6,S丙23.5,S丁23.68,你认为派谁去参赛更合适()A甲B乙C丙D丁6如图,在中,将折叠,使点与的中点重合,折痕为,则线段的长为( )ABCD7计算-5+1的结果为( )A-6B-4C4D68十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A8×1012B8×1013C8×1014D0.8×10139在,这四个数中,比小的数有( )个ABCD10如图,若ABCD,则、之间的关系为()A+=360°B+=180°C+=180°D+=180°二、填空题(本大题共6个小题,每小题3分,共18分)11在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心已知:求作:所在圆的圆心曈曈的作法如下:如图2,(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心老师说:“曈曈的作法正确”请你回答:曈曈的作图依据是_12如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若DEF的面积为,则k的值_ 13以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BEAC,垂足为E若双曲线y=(x0)经过点D,则OBBE的值为_14如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则BDC的度数为_度15如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_16方程的解为_.三、解答题(共8题,共72分)17(8分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF18(8分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tan的值测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度(参考数据sin26.6°0.45,tan26.6°0.50;sin37°0.60,tan37°0.75)19(8分)如图,在平面直角坐标系xOy中,函数()的图象经过点,ABx轴于点B,点C与点A关于原点O对称, CDx轴于点D,ABD的面积为8.(1)求m,n的值;(2)若直线(k0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标20(8分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C(1)求证:ACD=B;(2)如图2,BDC的平分线分别交AC,BC于点E,F,求CEF的度数21(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元请解答以下问题:(1)填空:每天可售出书 本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22(10分)佳佳向探究一元三次方程x3+2x2x2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k0)的解,二次函数y=ax2+bx+c(a0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a0)的解,如:二次函数y=x22x3的图象与x轴的交点为(1,0)和(3,0),交点的横坐标1和3即为x22x3=0的解根据以上方程与函数的关系,如果我们直到函数y=x3+2x2x2的图象与x轴交点的横坐标,即可知方程x3+2x2x2=0的解佳佳为了解函数y=x3+2x2x2的图象,通过描点法画出函数的图象x321012y80m2012(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有 个,分别为 ;(3)借助函数的图象,直接写出不等式x3+2x2x+2的解集23(12分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上求APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?24绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”.根据以上信息,解答下列问题: 补全折线统计图和扇形统计图; 求所有“称职”和“优秀”的销售员销售额的中位数和众数; 为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,A(1,0),B(0,2),即OA=1,OB=2,在OBA和CDA中,AOB=ADC=90°,OAB=DAC,OA=AD,OBACDA(AAS),CD=OB=2,OA=AD=1,(同底等高三角形面积相等),选项正确;C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0x2时,选项错误;当x=3时,即EF=,选项正确;当x0时,随x的增大而增大,随x的增大而减小,选项正确,故选C考点:反比例函数与一次函数的交点问题2、C【解析】由一元二次方程有实数根可知0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围【详解】关于x的一元二次方程x22x+k+2=0有实数根,=(2)24(k+2)0,解得:k1,在数轴上表示为:故选C.【点睛】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.3、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1故选C4、D【解析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题【详解】解:反比例函数y=,在每个象限内,y随x的增大而增大,当1x3时,y的取值范围是6y1故选D【点睛】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答5、A【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.6、C【解析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在RtBND中,根据勾股定理可得关于x的方程,解方程即可求解【详解】设,则.由折叠的性质,得.因为点是的中点,所以.在中,由勾股定理,得,即,解得,故线段的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键7、B【解析】根据有理数的加法法则计算即可【详解】解:-5+1=-(5-1)=-1故选B【点睛】本题考查了有理数的加法8、B【解析】80万亿用科学记数法表示为8×1故选B点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.9、B【解析】比较这些负数的绝对值,绝对值大的反而小.【详解】在4、1、这四个数中,比2小的数是是4和.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.10、C【解析】过点E作EFAB,如图,易得CDEF,然后根据平行线的性质可得BAE+FEA=180°,C=FEC=,进一步即得结论【详解】解:过点E作EFAB,如图,ABCD,ABEF,CDEF,BAE+FEA=180°,C=FEC=,FEA=,+()=180°,即+=180°故选:C【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EFAB、熟练掌握平行线的性质是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆)【解析】(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心【详解】解:根据线段的垂直平分线的性质定理可知:,所以点是所在圆的圆心(理由线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆):)故答案为线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆)【点睛】本题考查作图复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12、1【解析】利用对称性可设出E、F的两点坐标,表示出DEF的面积,可求出k的值【详解】解:设AFa(a2),则F(a,2),E(2,a),FDDE2a,SDEFDFDE,解得a或a(不合题意,舍去),F(,2),把点F(,2)代入解得:k1,故答案为1【点睛】本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键13、1【解析】由双曲线y=(x0)经过点D知SODF=k=,由矩形性质知SAOB=2SODF=,据此可得OABE=1,根据OA=OB可得答案【详解】如图,双曲线y=(x0)经过点D,SODF=k=,则SAOB=2SODF=,即OABE=,OABE=1,四边形ABCD是矩形,OA=OB,OBBE=1,故答案为:1【点睛】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质14、1【解析】根据EBD由ABC旋转而成,得到ABCEBD,则BCBD,EBDABC30°,则有BDCBCD,DBC18030°10°,化简计算即可得出.【详解】解:EBD由ABC旋转而成,ABCEBD,BCBD,EBDABC30°,BDCBCD,DBC18030°10°,;故答案为:1【点睛】此题考查旋转的性质,即图形旋转后与原图形全等15、1x1【解析】此题需要运用极端原理求解;BP最小时,F、D重合,由折叠的性质知:AF=PF,在RtPFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;【详解】解:如图:当F、D重合时,BP的值最小;根据折叠的性质知:AF=PF=5;在RtPFC中,PF=5,FC=1,则PC=4;BP=xmin=1;当E、B重合时,BP的值最大;由折叠的性质可得BP=AB=1所以BP的取值范围是:1x1故答案为:1x1【点睛】此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键16、【解析】两边同时乘,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘,得,解得,检验:当时,0,所以x=1是原分式方程的根,故答案为:x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.三、解答题(共8题,共72分)17、详见解析【解析】根据平行四边形的性质和已知条件证明ABECDF,再利用全等三角形的性质:即可得到AE=CF【详解】证:四边形ABCD是平行四边形,AB=CD,B=D,又BE=DF,ABECDF,AE=CF. (其他证法也可)18、【解析】过点P作PDOC于D,PEOA于E,则四边形ODPE为矩形,先解RtPBD,得出BD=PDtan26.6°;解RtCBD,得出CD=PDtan37°;再根据CDBD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在APE中利用三角函数的定义即可求解【详解】解:如图,过点P作PDOC于D,PEOA于E,则四边形ODPE为矩形在RtPBD中,BDP=90°,BPD=26.6°,BD=PDtanBPD=PDtan26.6°在RtCBD中,CDP=90°,CPD=37°,CD=PDtanCPD=PDtan37°CDBD=BC,PDtan37°PDtan26.6°=10.75PD0.50PD=1,解得PD=2BD=PDtan26.6°2×0.50=3OB=220,PE=OD=OBBD=4OE=PD=2,AE=OEOA=2200=519、(1)m=8,n=-2;(2) 点F的坐标为,【解析】分析:(1)利用三角形的面积公式构建方程求出n,再利用 待定系数法求出m的的值即可;(2)分两种情形分别求解如图,当k<0时,设直线y=kx+b与x轴,y轴的交点分别为, . 图中,当k>0时,设直线y=kx+b与x轴,y轴的交点分别为点,.详解:(1)如图 点A的坐标为,点C与点A关于原点O对称, 点C的坐标为 ABx轴于点B,CDx轴于点D, B,D两点的坐标分别为, ABD的面积为8, 解得 函数()的图象经过点, (2)由(1)得点C的坐标为 如图,当时,设直线与x轴,y轴的交点分别为点,由 CDx轴于点D可得CD CD O , 点的坐标为 如图,当时,设直线与x轴,y轴的交点分别为点,同理可得CD, , 为线段的中点, 点的坐标为综上所述,点F的坐标为,点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.20、(1)详见解析;(2)CEF=45°【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出DCOACB90°,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明CEF=CFE即可求解试题解析:(1)证明:如图1中,连接OCOAOC,12,CD是O切线,OCCD,DCO90°,3290°,AB是直径,1B90°,3B(2)解:CEFECDCDE,CFEBFDB,CDEFDB,ECDB,CEFCFE,ECF90°,CEFCFE45°21、(1)(30010x)(2)每本书应涨价5元【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(30010x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)每本书上涨了x元,每天可售出书(30010x)本故答案为30010x(2)设每本书上涨了x元(x10),根据题意得:(4030+x)(30010x)=3750,整理,得:x220x+75=0,解得:x1=5,x2=15(不合题意,舍去)答:若书店想每天获得3750元的利润,每本书应涨价5元22、(1)2;(2)3,2,或1或1(3)2x1或x1【解析】试题分析:(1)求出x=1时的函数值即可解决问题;利用描点法画出图象即可;(2)利用图象以及表格即可解决问题;(3)不等式x3+2x2x+2的解集,即为函数y=x3+2x2x2的函数值大于2的自变量的取值范围,观察图象即可解决问题.试题解析:(1)由题意m=1+2+12=2函数图象如图所示(2)根据表格和图象可知,方程的解有3个,分别为2,或1或1(3)不等式x3+2x2x+2的解集,即为函数y=x3+2x2x2的函数值大于2的自变量的取值范围观察图象可知,2x1或x123、(1)30°;(2)海监船继续向正东方向航行是安全的【解析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PHAB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在APB中,PAB=30°,ABP=120°APB=180°-30°-120°=30°(2)过点P作PHAB于点H 在RtAPH中,PAH=30°,AH=PH在RtBPH中,PBH=30°,BH=PHAB=AH-BH=PH=50解得PH=2525,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形24、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.【解析】(1) 根据称职的人数及其所占百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 (2) 根据中位数和众数的定义求解可得;(3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 【详解】(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),总人数为:20÷50%=40(人),不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,“优秀”人数为:40×15%=6(人),得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.“称职”和“优秀”的销售员月销售额的中位数为:22万,要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【点睛】考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.