江苏省南通市如皋中学2023届高考冲刺押题(最后一卷)数学试卷含解析.doc
-
资源ID:88304314
资源大小:2.21MB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省南通市如皋中学2023届高考冲刺押题(最后一卷)数学试卷含解析.doc
2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A2BCD2已知函数为奇函数,则( )AB1C2D33抛物线的准线方程是,则实数( )ABCD4一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( )A甲件,乙件B甲件,乙件C甲件,乙件D甲件,乙件5已知为虚数单位,复数,则其共轭复数( )ABCD6在原点附近的部分图象大概是( )ABCD7设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )ABCD8二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A180B90C45D3609已知是第二象限的角,则( )ABCD10如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD11已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点若双曲线的离心率为2,三角形AOB的面积为,则p=( )A1BC2D312某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A56B60C140D120二、填空题:本题共4小题,每小题5分,共20分。13某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是_.2至3月份的收入的变化率与11至12月份的收入的变化率相同;支出最高值与支出最低值的比是6:1;第三季度平均收入为50万元;利润最高的月份是2月份14曲线在处的切线的斜率为_.15已知数列中,为其前项和,则_,_.16戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_种(用数字作答),三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角、的对边分别为、,且.(1)若,求的值;(2)若,求的值.18(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值19(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.()若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;()若直线的斜率存在且不为0,四边形为平行四边形,求证:;()在()的条件下,判断四边形能否为矩形,说明理由.20(12分)在四棱锥中,底面是边长为2的菱形,是的中点(1)证明:平面;(2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积21(12分)已知是公比为的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答22(10分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值【详解】解:设直线l的方程为yx+t,代入y21,消去y得x2+2tx+t210,由题意得(2t)21(t21)0,即t21弦长|AB|4故选:C【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口2、B【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.3、C【解析】根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.4、D【解析】由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.5、B【解析】先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.6、A【解析】分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,则函数为奇函数,排除C、D选项;当时,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.7、C【解析】设,求,作为的函数,其最小值是6,利用导数知识求的最小值【详解】设,则,记,易知是增函数,且的值域是,的唯一解,且时,时,即,由题意,而,解得,故选:C【点睛】本题考查导数的应用,考查用导数求最值解题时对和的关系的处理是解题关键8、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,令,则,.考点:1.二项式定理;2.组合数的计算.9、D【解析】利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,即,因为,所以,由二倍角的正弦公式可得,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.10、B【解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.11、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,渐近线方程为,求出交点,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;12、C【解析】试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率分布直方图及其应用二、填空题:本题共4小题,每小题5分,共20分。13、【解析】通过图片信息直接观察,计算,找出答案即可【详解】对于,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确对于,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确对于,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确对于,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是806020万元,错误故答案为【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题目14、【解析】求出函数的导数,利用导数的几何意义令,即可求出切线斜率.【详解】,即曲线在处的切线的斜率.故答案为:【点睛】本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.15、8 (写为也得分) 【解析】由,得,.当时,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.16、1080【解析】按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.【详解】将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,则不同的分配方案有种.故答案为:1080【点睛】本题主要考查分组分配问题,还考查了理解辨析的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用余弦定理得出关于的二次方程,结合,可求出的值;(2)利用两角和的余弦公式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.【详解】(1)在中,由余弦定理得,即, 解得或(舍),所以;(2)由及得, 所以,又因为,所以,从而,所以.【点睛】本题考查利用余弦定理解三角形,同时也考查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.18、见解析【解析】(1)如图,连接,交于点,连接,则为的中点,因为为的中点,所以,又,所以,从而,四点共面因为平面,平面,平面平面,所以又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,所以,互相垂直,分别以,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,所以,所以,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,所以,所以平面与平面所成二面角的正弦值为19、 () ;()证明见解析;()不能,证明见解析【解析】()计算得到故,计算得到面积.() 设为,联立方程得到,计算,同理,根据得到,得到证明.() 设中点为,根据点差法得到,同理,故,得到结论.【详解】(),故,.故四边形的面积为.()设为,则,故,设,故,同理可得,故,即,故.()设中点为,则,相减得到,即,同理可得:的中点,满足,故,故四边形不能为矩形.【点睛】本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.20、(1)见解析(2)【解析】(1)连接与交于,连接,证明即可得证线面平行;(2)首先证明平面(只要取中点,可证平面,从而得,同理得),因此点到直线的距离即为点到平面的距离,由平面几何知识易得最大值,然后可计算体积【详解】(1)证明:连接与交于,连接,因为是菱形,所以为的中点,又因为为的中点,所以,因为平面平面,所以平面(2)解:取中点,连接,因为四边形是菱形,且,所以,又,所以平面,又平面,所以同理可证:,又,所以平面,所以平面平面,又平面平面,所以点到直线的距离即为点到平面的距离,过作直线的垂线段,在所有垂线段中长度最大为,因为为的中点,故点到平面的最大距离为1,此时,为的中点,即,所以,所以【点睛】本题考查证明线面平行,考查求棱锥的体积,掌握面面垂直与线面垂直的判定与性质是解题关键21、见解析【解析】选择或或,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【详解】选择:因为,所以,所以令,即,所以使得的正整数的最小值为;选择:因为,所以,因为,所以不存在满足条件的正整数;选择:因为,所以,所以令,即,整理得当为偶数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为【点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题22、(1)见解析(2)【解析】(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,为常数列,且,【点睛】本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.