江苏省无锡江阴市要塞片2023届中考数学模试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”已知O是以原点为圆心,半径为 圆,则O的“整点直线”共有( )条A7B8C9D102下列所给函数中,y随x的增大而减小的是()Ay=x1By=2x2(x0)CDy=x+13将抛物线y(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A向下平移3个单位B向上平移3个单位C向左平移4个单位D向右平移4个单位4如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD5下列计算正确的是()A(a2)3a6Ba2a3a6Ca3+a4a7D(ab)3ab36整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足( ).ABCD7如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=20°,那么EFC的度数为()A115°B120°C125°D130°8下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab2÷2ab=3b9按如图所示的方法折纸,下面结论正确的个数( )290°;1AEC;ABEECF;BAE1A1 个B2 个C1 个D4 个10一次函数y=kx+k(k0)和反比例函数在同一直角坐标系中的图象大致是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知点C为反比例函数上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为_12一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为_海里/时13分解因式:x24=_14观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;请按以上规律解答下列问题:(1)列出第5个等式:a5=_;(2)求a1+a2+a3+an=,那么n的值为_15用配方法解方程3x26x+1=0,则方程可变形为(x_)2=_16某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_m1三、解答题(共8题,共72分)17(8分)如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标18(8分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F(1)求证:GBEGEF(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围(3)如图2,连接AC交GF于点Q,交EF于点P当AGQ与CEP相似,求线段AG的长 19(8分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间(单位:小时),将获得的数据分成四组,绘制了如下统计图(:,:,:,:),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示组的扇形统计图的圆心角的度数;(3)如果李青想从组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率20(8分)(1)如图1,在矩形ABCD中,AB2,BC5,MPN90°,且MPN的直角顶点在BC边上,BP1特殊情形:若MP过点A,NP过点D,则 类比探究:如图2,将MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由(2)拓展探究:在RtABC中,ABC90°,ABBC2,ADAB,A的半径为1,点E是A上一动点,CFCE交AD于点F请直接写出当AEB为直角三角形时的值21(8分)如图,矩形ABCD中,点E为BC上一点,DFAE于点F,求证:AEBCDF.22(10分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分请根据图表信息回答下列问题:视力频数(人)频率4.0x4.3200.14.3x4.6400.24.6x4.9700.354.9x5.2a0.35.2x5.510b(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a ,b ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?23(12分)某公司为了扩大经营,决定购进6台机器用于生产某活塞现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060 (1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?24如图,RtABC,CABC,AC4,在AB边上取一点D,使ADBC,作AD的垂直平分线,交AC边于点F,交以AB为直径的O于G,H,设BCx(1)求证:四边形AGDH为菱形;(2)若EFy,求y关于x的函数关系式;(3)连结OF,CG若AOF为等腰三角形,求O的面积;若BC3,则CG+9_(直接写出答案)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.2、A【解析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项【详解】解:A此函数为一次函数,y随x的增大而减小,正确;B此函数为二次函数,当x0时,y随x的增大而减小,错误;C此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D此函数为一次函数,y随x的增大而增大,错误故选A【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键3、A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.4、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30°,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30°,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90°,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.5、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型理解各种计算法则是解题的关键6、D【解析】根据acb,可得c的最小值是1,根据有理数的加法,可得答案【详解】由acb,得:c最小值是1,当c=1时,c+d=1+d,1+d0,解得:d1,db故选D【点睛】本题考查了实数与数轴,利用acb得出c的最小值是1是解题的关键7、C【解析】分析:由已知条件易得AEB=70°,由此可得DEB=110°,结合折叠的性质可得DEF=55°,则由ADBC可得EFC=125°,再由折叠的性质即可得到EFC=125°.详解:在ABE中,A=90°,ABE=20°,AEB=70°,DEB=180°-70°=110°,点D沿EF折叠后与点B重合,DEF=BEF=DEB=55°,在矩形ABCD中,ADBC,DEF+EFC=180°,EFC=180°-55°=125°,由折叠的性质可得EFC=EFC=125°.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.8、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键9、C【解析】1+1=2,1+1+2=180°,1+1=2=90°,故正确;1+1=2,1AEC.故不正确;1+1=90°,1+BAE=90°,1=BAE,又BC,ABEECF.故,正确;故选C.10、C【解析】A、由反比例函数的图象在一、三象限可知k0,由一次函数的图象过二、四象限可知k0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k0,由一次函数的图象与y轴交点在y轴的正半轴可知k0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k0,由一次函数的图象过二、三、四象限可知k0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k0,由一次函数的图象与y轴交点在y轴的负半轴可知k0,两结论相矛盾,故选项错误,故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】解:由于点C为反比例函数上的一点,则四边形AOBC的面积S=|k|=1故答案为:1.12、【解析】设该船行驶的速度为x海里/时,由已知可得BC3x,AQBC,BAQ60°,CAQ45°,AB80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC40403x,解方程即可【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB80海里,BC3x海里,在直角三角形ABQ中,BAQ60°,B90°60°30°,AQAB40,BQAQ40,在直角三角形AQC中,CAQ45°,CQAQ40,BC40403x,解得:x.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.13、(x+2)(x2)【解析】【分析】直接利用平方差公式进行因式分解即可【详解】x24=x2-22=(x+2)(x2),故答案为:(x+2)(x2)【点睛】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反14、 49 【解析】(1)观察等式可得 然后根据此规律就可解决问题;(2)只需运用以上规律,采用拆项相消法即可解决问题【详解】(1)观察等式,可得以下规律:, (2) 解得:n=49.故答案为:49.【点睛】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.15、1 【解析】原方程为3x26x+1=0,二次项系数化为1,得x22x=,即x22x+1=+1,所以(x1)2= .故答案为:1,.16、150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为三、解答题(共8题,共72分)17、 (1)yx2x4(2)点M的坐标为(2,4)(3)或【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式; (2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM(m2)212. 当m2时,四边形OAMC面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC4,CDC1D,AD43;设点P ,过P作PQ垂直于x轴,垂足为Q. 证PAQC1AD,得,即,解得解得n,或n,或n4(舍去).【详解】(1)抛物线的解析式为y (x4)(x2)x2x4.(2)连接OM,设点M的坐标为. 由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM× 4m× 4 m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.OAOC,AOC90°,CDC190°,AC4,CDC1D,AD43,设点P ,过P作PQ垂直于x轴,垂足为Q.PABCAC1,AQPADC1,PAQC1AD,即 ,化简得 (82n),即3n26n2482n,或3n26n24(82n),解得n,或n,或n4(舍去),点P的横坐标为或.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.18、(1)见解析;(2)y=4x+(0x3);(3)当AGQ与CEP相似,线段AG的长为2或4【解析】(1)先判断出BEF'CEF,得出BF'=CF,EF'=EF,进而得出BGE=EGF,即可得出结论;(2)先判断出BEGCFE进而得出CF=,即可得出结论;(3)分两种情况,AGQCEP时,判断出BGE=60°,即可求出BG;AGQCPE时,判断出EGAC,进而得出BEGBCA即可得出BG,即可得出结论【详解】(1)如图1,延长FE交AB的延长线于F',点E是BC的中点,BE=CE=2,四边形ABCD是正方形,ABCD,F'=CFE,在BEF'和CEF中,BEF'CEF,BF'=CF,EF'=EF,GEF=90°,GF'=GF,BGE=EGF,GBE=GEF=90°,GBEGEF;(2)FEG=90°,BEG+CEF=90°,BEG+BGE=90°,BGE=CEF,EBG=C=90°,BEGCFE,由(1)知,BE=CE=2,AG=x,BG=4x,CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,y=GF'=BG+BF'=4x+当CF=4时,即:=4,x=3,(0x3),即:y关于x的函数表达式为y=4x+(0x3);(3)AC是正方形ABCD的对角线,BAC=BCA=45°,AGQ与CEP相似,AGQCEP,AGQ=CEP,由(2)知,CEP=BGE,AGQ=BGE,由(1)知,BGE=FGE,AGQ=BGQ=FGE,AGQ+BGQ+FGE=180°,BGE=60°,BEG=30°,在RtBEG中,BE=2,BG=,AG=ABBG=4,AGQCPE,AQG=CEP,CEP=BGE=FGE,AQG=FGE,EGAC,BEGBCA,BG=2,AG=ABBG=2,即:当AGQ与CEP相似,线段AG的长为2或4【点睛】本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.19、(1)50人;(2)补全图形见解析,表示A组的扇形统计图的圆心角的度数为108°;(3).【解析】分析:(1)、根据B的人数和百分比得出样本容量;(2)、根据总人数求出C组的人数,根据A组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率详解:(1)被调查的总人数为19÷38%=50人;(2)C组的人数为50(15+19+4)=12(人),补全图形如下:表示A组的扇形统计图的圆心角的度数为360°×=108°;(3)画树状图如下,共有12个可能的结果,恰好选中甲的结果有6个, P(恰好选中甲)=.点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型理解频数、频率与样本容量之间的关系是解题的关键20、 (1) 特殊情形:;类比探究: 是定值,理由见解析;(2) 或【解析】(1)证明,即可求解;(2)点E与点B重合时,四边形EBFA为矩形,即可求解;(3)分时、时,两种情况分别求解即可【详解】解:(1),故答案为;(2)点E与点B重合时,四边形EBFA为矩形,则为定值;(3)当时,如图3,过点E、F分别作直线BC的垂线交于点G,H,由(1)知:,同理, .则,则 ;当时,如图4,则,则,则 ,故或 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏21、见解析.【解析】利用矩形的性质结合平行线的性质得出CDF+ADF90°,进而得出CDFDAF,由ADBC,得出答案.【详解】四边形ABCD是矩形,ADC90°,ADBC,CDF+ADF90°,DFAE于点F,DAF+ADF90°,CDFDAF.ADBC,DAFAEB,AEBCDF.【点睛】此题主要考查了矩形的性质以及平行线的性质,正确得出CDFDAF是解题关键.22、200名初中毕业生的视力情况 200 60 0.05 【解析】(1)根据视力在4.0x4.3范围内的频数除以频率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【详解】(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,故答案为200;(2)a=200×0.3=60,b=10÷200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000×=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人23、(1)有3种购买方案购乙6台,购甲1台,购乙5台,购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数34万元就可以得到关于x的不等式,就可以求出x的范围(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数380件根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案【详解】解:(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)34解这个不等式,得x2,即x可取0,1,2三个值.该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)380解之得x> 由(1)得x2,即x2.x可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. 为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案24、(1)证明见解析;(2)yx2(x0);(3)或8或(2+2);4【解析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明AEFACB,可得解决问题;(3)分三种情形分别求解即可解决问题;只要证明CFGHFA,可得=,求出相应的线段即可解决问题;【详解】(1)证明:GH垂直平分线段AD,HAHD,GAGD,AB是直径,ABGH,EGEH,DGDH,AGDGDHAH,四边形AGDH是菱形(2)解:AB是直径,ACB90°,AEEF,AEFACB90°,EAFCAB,AEFACB,yx2(x0)(3)解:如图1中,连接DFGH垂直平分线段AD,FAFD,当点D与O重合时,AOF是等腰三角形,此时AB2BC,CAB30°,AB,O的面积为如图2中,当AFAO时,AB,OA,AF,解得x4(负根已经舍弃),AB,O的面积为8如图21中,当点C与点F重合时,设AEx,则BCAD2x,AB,ACEABC,AC2AEAB,16x,解得x222(负根已经舍弃),AB216+4x28+8,O的面积AB2(2+2)综上所述,满足条件的O的面积为或8或(2+2);如图3中,连接CGAC4,BC3,ACB90°,AB5,OHOA,AE,OEOAAE1,EGEH,EFx2,FG,AF,AH,CFGAFH,FCGAHF,CFGHFA,CG,CG+94故答案为4【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题