江苏省扬州树人学校2023年毕业升学考试模拟卷数学卷含解析.doc
-
资源ID:88304436
资源大小:992KB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省扬州树人学校2023年毕业升学考试模拟卷数学卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,1老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”如果令其中i1,2,1;j1,2,1则a1,1a1,2+a2,1a2,2+a3,1a3,2+a1,1a1,2表示的实际意义是()A同意第1号或者第2号同学当选的人数B同时同意第1号和第2号同学当选的人数C不同意第1号或者第2号同学当选的人数D不同意第1号和第2号同学当选的人数2近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A1.8×105B1.8×104C0.18×106D18×1043如图,是的外接圆,已知,则的大小为ABCD4某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD5小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()ABCD6下列几何体中,主视图和左视图都是矩形的是()ABCD7如图,一次函数yx1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若ACBC,则点C的坐标为()A(0,1)B(0,2)CD(0,3)8一元二次方程x2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=59如图,小明将一张长为20cm,宽为15cm的长方形纸(AEDE)剪去了一角,量得AB3cm,CD4cm,则剪去的直角三角形的斜边长为()A5cmB12cmC16cmD20cm10估算的值在( )A3和4之间B4和5之间C5和6之间D6和7之间二、填空题(共7小题,每小题3分,满分21分)11如图,菱形的边,是上一点,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为_12一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_13如图,与是以点为位似中心的位似图形,相似比为,若点的坐标是,则点的坐标是_14如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_cm15在RtABC中,ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上则线段CP长的取值范围是_.16已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_17如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为_米(结果保留根号)三、解答题(共7小题,满分69分)18(10分)如图,菱形ABCD的边长为20cm,ABC120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿AB的路线向点B运动;过点P作PQBD,与AC相交于点Q,设运动时间为t秒,0t1(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由19(5分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积20(8分)在等边ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求BEC的度数;(2)如图2,当MAC30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°MAC120°,当线段DE2BE时,直接写出MAC的度数.21(10分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元 (1)二月份冰箱每台售价为多少元?(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y12),请问有几种进货方案?(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?22(10分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.23(12分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率24(14分)先化简再求值:,其中,.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加【详解】第1,2,3,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,a1,1来确定,是否同意第2号同学当选依次由a1,2,a2,2,a3,2,a1,2来确定,a1,1a1,2+a2,1a2,2+a3,1a3,2+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,故选B【点睛】本题考查了推理应用题,题目比较新颖,是基础题2、A【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】180000=1.8×105,故选A【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、A【解析】解:AOB中,OA=OB,ABO=30°;AOB=180°-2ABO=120°;ACB=AOB=60°;故选A4、B【解析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键5、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.6、C【解析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形依此即可求解【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.7、B【解析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题【详解】由,解得 或,A(2,1),B(1,0),设C(0,m),BC=AC,AC2=BC2,即4+(m-1)2=1+m2,m=2,故答案为(0,2)【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题8、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.9、D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1则剪去的直角三角形的斜边长为1cm故选D【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算10、C【解析】由可知56,即可解出.【详解】56,故选C.【点睛】此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】如图所示,过点作,交于点.在菱形中,且,所以为等边三角形, 根据“等腰三角形三线合一”可得,因为,所以在中,根据勾股定理可得,因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为所以,所以,所以点睛:A为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A点在以P为圆心、AP为半径的圆上,当C、A、P在同一条直线时CA取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.12、60°或120°【解析】首先根据题意画出图形,过点O作ODAB于点D, 通过垂径定理, 即可推出AOD的度数, 求得AOB的度数, 然后根据圆周角定理,即可推出AMB和ANB的度数.【详解】解:如图:连接OA,过点O作ODAB 于点D,OA=2,AB=,AD=BD=,AD:OA=:2,AOD=, AOB=,AMB=,ANB=.故答案为: 或.【点睛】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.13、(2,2) 【解析】分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可详解:与是以点为位似中心的位似图形, ,若点的坐标是, 过点作交于点E. 点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.14、【解析】设圆锥的底面圆的半径为r,由于AOB90°得到AB为圆形纸片的直径,则OBcm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,扇形OAB的圆心角为90°,AOB90°,AB为圆形纸片的直径,AB4cm,OBcm,扇形OAB的弧AB的长,2r,r(cm)故答案为【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长也考查了圆周角定理和弧长公式15、【解析】根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,RtABC中,ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1CP5,故答案为1CP5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.16、1【解析】先根据概率公式得到,解得.【详解】根据题意得,解得.故答案为:.【点睛】本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.17、100+100【解析】【分析】由已知可得ACD=MCA=45°,B=NCB=30°,继而可得DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.【详解】MN/AB,MCA=45°,NCB=30°,ACD=MCA=45°,B=NCB=30°,CDAB,CDA=CDB=90°,DCB=60°,CD=100米,AD=CD=100米,DB=CDtan60°=CD=100米,AB=AD+DB=100+100(米), 故答案为:100+100【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形注意方程思想与数形结合思想的应用 三、解答题(共7小题,满分69分)18、 (1) S=2(0t1); (2) ;(3)见解析.【解析】(1)如图1,根据S=SABC-SAPQ,代入可得S与t的关系式;(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值【详解】解:(1)如图1,四边形ABCD是菱形,ABD=DBC=ABC=60°,ACBD,OAB=30°,AB=20,OB=10,AO=10,由题意得:AP=4t,PQ=2t,AQ=2t,S=SABCSAPQ,=,= ,=2t2+100(0t1);(2)如图2,在RtAPM中,AP=4t,点Q关于O的对称点为M,OM=OQ,设PM=x,则AM=2x,AP=x=4t,x=,AM=2PM=,AM=AO+OM,=10+102t,t=;答:当t为秒时,点P、M、N在一直线上;(3)存在,如图3,直线PN平分四边形APMN的面积,SAPN=SPMN,过M作MGPN于G, ,MG=AP,易得APHMGH,AH=HM=t,AM=AO+OM,同理可知:OM=OQ=102t,t=10=102t,t=答:当t为秒时,使得直线PN平分四边形APMN的面积【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.19、(1),;(2)P,【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,点A的坐标为(1,3)把点A(1,3)代入反比例函数y=,得:3=k,反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,点B的坐标为(3,1)(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示点B、D关于x轴对称,点B的坐标为(3,1),点D的坐标为(3,- 1)设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,直线AD的解析式为y=-2x+1令y=-2x+1中y=0,则-2x+1=0,解得:x=,点P的坐标为(,0)SPAB=SABD-SPBD=BD(xB-xA)-BD(xB-xP)=×1-(-1)×(3-1)-×1-(-1)×(3-)=考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题20、(1)补全图形如图1所示,见解析,BEC60°;(2)BE2DE,见解析;(3)MAC90°.【解析】(1)根据轴对称作出图形,先判断出ABDADBy,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出CBD30°,进而得出BCD90°,即可得出结论;(3)先作出EF2BE,进而判断出EFCE,再判断出CBE90°,进而得出BCE30°,得出AEC60°,即可得出结论.【详解】(1)补全图形如图1所示,根据轴对称得,ADAC,DAECAEx,DEMCEM.ABC是等边三角形,ABAC,BAC60°.ABAD.ABDADBy.在ABD中,2x+2y+60°180°,x+y60°.DEMCEMx+y60°.BEC60°;(2)BE2DE,证明:ABC是等边三角形,ABBCAC,由对称知,ADAC,CAD2CAM60°,ACD是等边三角形,CDAD,ABBCCDAD,四边形ABCD是菱形,且BAD2CAD120°,ABC60°,ABDDBC30°,由(1)知,BEC60°,ECB90°.BE2CE.CEDE,BE2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明CBD90°,画图时,没画在一条直线上)延长EB至F使BEBF,EF2BE,由轴对称得,DECE,DE2BE,CE2BE,EFCE,连接CF,同(1)的方法得,BEC60°,CEF是等边三角形,BEBF,CBE90°,BCE30°,ACE30°,AEDAEC,BEC60°,AEC60°,MAC180°AECACE90°.【点睛】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.21、(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1【解析】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y2及y为正整数,即可得出各进货方案;(3)设总获利为w,购进冰箱为m台,洗衣机为(20m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值【详解】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据题意,得: =,解得:x=4000,经检验,x=4000是原方程的根答:二月份冰箱每台售价为4000元(2)根据题意,得:3500y+4000(20y)76000,解得:y3,y2且y为整数,y=3,9,10,11,2洗衣机的台数为:2,11,10,9,3有五种购货方案(3)设总获利为w,购进冰箱为m台,洗衣机为(20m)台,根据题意,得:w=(40003500a)m+(44004000)(20m)=(1a)m+3000,(2)中的各方案利润相同,1a=0,a=1答:a的值为1【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式22、这辆车第二、三年的年折旧率为.【解析】设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为30(1-20%)(1-x)元,第三年折旧后的而价格为30(1-20%)(1-x)2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可【详解】设这辆车第二、三年的年折旧率为,依题意,得 整理得, 解得,.因为折旧率不可能大于1,所以不合题意,舍去.所以 答:这辆车第二、三年的年折旧率为.【点睛】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键23、(1)(2)【解析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可【详解】解: (1)甲投放的垃圾恰好是A类的概率是(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是24、8【解析】原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,合并得到最简结果,将x与y的值代入计算即可求出值【详解】原式=,当,时,原式=【点睛】本题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式、单项式乘以多项式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键