江苏省无锡市宜兴中学2023年中考二模数学试题含解析.doc
-
资源ID:88304461
资源大小:712KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省无锡市宜兴中学2023年中考二模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1关于的方程有实数根,则整数的最大值是( )A6B7C8D92若x2 是关于x的一元二次方程x2axa20的一个根,则a的值为( )A1或4B1或4C1或4D1或43如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A(a+b)(ab)a2b2B(ab)2a22ab+b2C(a+b)2a2+2ab+b2D(a+b)2(ab)2+4ab4下列各式中正确的是()A =±3 B =3 C =3 D5如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )A米B米C米D米6要使分式有意义,则x的取值范围是( )Ax=Bx>Cx<Dx7在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A众数是5B中位数是5C平均数是6D方差是3.68如图,ABC是等腰直角三角形,A=90°,BC=4,点P是ABC边上一动点,沿BAC的路径移动,过点P作PDBC于点D,设BD=x,BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A B C D9 的相反数是()ABCD210如图,在O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:ABCD; AOB=4ACD;弧AD=弧BD;PO=PD,其中正确的个数是()A4B1C2D311下列说法正确的是()A3是相反数B3与3互为相反数C3与互为相反数D3与互为相反数12如图,直线a,b被直线c所截,若ab,1=50°,3=120°,则2的度数为()A80°B70°C60°D50°二、填空题:(本大题共6个小题,每小题4分,共24分)13如图RtABC中,C=90°,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把BDP沿PD所在直线翻折后,点B落在点Q处,如果QDBC,那么点P和点B间的距离等于_14如图,在ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),ADE=B=,DE交AB于点E,且tan=,有以下的结论:ADEACD;当CD=9时,ACD与DBE全等;BDE为直角三角形时,BD为12或;0BE,其中正确的结论是 _(填入正确结论的序号).15如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则AEB_.16大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为_cm17有一个正六面体,六个面上分别写有16这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是_18如图,等边ABC的边长为1cm,D、E分别是AB、AC边上的点,将ADE沿直线DE折叠,点A落在点处,且点在ABC的外部,则阴影部分图形的周长为_cm. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点C在线段AB上,ADEB,ACBE,ADBC,CF平分DCE求证:CFDE于点F20(6分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是 人,补全频数分布直方图,扇形图中m ;(2)本次调查数据中的中位数落在 组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?21(6分)如图,内接于,的延长线交于点.(1)求证:平分;(2)若,求和的长.22(8分)如图,在菱形ABCD中,对角线AC与BD交于点O过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 23(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图 态度非常喜欢喜欢一般不知道频数90b3010频率a0.350.20 请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了 名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数24(10分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD求证:AB=AF;若AG=AB,BCD=120°,判断四边形ACDF的形状,并证明你的结论25(10分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?26(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成27(12分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作ABx轴于点B,AOB的面积为1.求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求ACO的度数.结合图象直接写出:当0时,x的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则0,求出a的取值范围,取最大整数即可【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=;当a-60,即a6时,=(-1)2-4(a-6)×6=201-24a0,解上式,得1.6,取最大整数,即a=1故选C2、B【解析】试题分析:把x=2代入关于x的一元二次方程x2ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B考点:一元二次方程的解;一元二次方程的解法3、B【解析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答【详解】图1中阴影部分的面积为:(ab)2;图2中阴影部分的面积为:a22ab+b2;(ab)2a22ab+b2,故选B【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键4、D【解析】原式利用平方根、立方根定义计算即可求出值【详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键5、A【解析】利用锐角三角函数关系即可求出小刚上升了的高度【详解】在RtAOB中,AOB=90°,AB=300米,BO=ABsin=300sin米故选A【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键6、D【解析】本题主要考查分式有意义的条件:分母不能为0,即3x70,解得x【详解】3x70,x故选D【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义7、D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为×(76)2+(56)2×2+(36)2+(106)2=5.6,此选项错误;故选:D【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大8、B【解析】解:过A点作AHBC于H,ABC是等腰直角三角形,B=C=45°,BH=CH=AH=BC=2,当0x2时,如图1,B=45°,PD=BD=x,y=xx=;当2x4时,如图2,C=45°,PD=CD=4x,y=(4x)x=,故选B9、A【解析】分析:根据相反数的定义结合实数的性质进行分析判断即可.详解:的相反数是.故选A.点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键.10、D【解析】根据垂径定理,圆周角的性质定理即可作出判断【详解】P是弦AB的中点,CD是过点P的直径ABCD,弧AD=弧BD,故正确,正确;AOB=2AOD=4ACD,故正确P是OD上的任意一点,因而不一定正确故正确的是:故选:D【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.11、B【解析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确【详解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与互为倒数,错误;D、3与-互为负倒数,错误;故选B【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键12、B【解析】直接利用平行线的性质得出4的度数,再利用对顶角的性质得出答案【详解】解:ab,1=50°,4=50°,3=120°,2+4=120°,2=120°-50°=70°故选B【点睛】此题主要考查了平行线的性质,正确得出4的度数是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、2.1或2【解析】在RtACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在RtQEP中,根据勾股定理可求QP,继而可求得答案【详解】如图所示:在RtACB中,C=90°,AC=6,BC=8,AB=2,由折叠的性质可得QD=BD,QP=BP,又QDBC,DQAC,D是AB的中点,DE=AC=3,BD=AB=1,BE=BC=4,当点P在DE右侧时,QE=1-3=2,在RtQEP中,QP2=(4-BP)2+QE2,即QP2=(4-QP)2+22,解得QP=2.1,则BP=2.1当点P在DE左侧时,同知,BP=2故答案为:2.1或2【点睛】考查了折叠的性质、直角三角形的性质以及勾股定理此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系14、【解析】试题解析:ADE=B,DAE=BAD,ADEABD;故错误;作AGBC于G,ADE=B=,tan=,cos=,AB=AC=15,BG=1,BC=24,CD=9,BD=15,AC=BDADE+BDE=C+DAC,ADE=C=,EDB=DAC,在ACD与DBE中,ACDBDE(ASA)故正确;当BED=90°时,由可知:ADEABD,ADB=AED,BED=90°,ADB=90°,即ADBC,AB=AC,BD=CD,ADE=B=且tan=,AB=15,BD=1当BDE=90°时,易证BDECAD,BDE=90°,CAD=90°,C=且cos=,AC=15,cosC=,CD=BC=24,BD=24-=即当DCE为直角三角形时,BD=1或故正确;易证得BDECAD,由可知BC=24,设CD=y,BE=x,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,0x,0BE故错误故正确的结论为:考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质15、75【解析】因为AEF是等边三角形,所以EAF=60°,AE=AF,因为四边形ABCD是正方形,所以AB=AD,B=D=BAD=90°.所以RtABERtADF(HL),所以BAE=DAF.所以BAE+DAF=BAD-EAF=90°-60°=30°,所以BAE=15°,所以AEB=90°-15°=75°.故答案为75.16、(155)【解析】先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长【详解】P为AB的黄金分割点(APPB),AP=AB=×10=55,PB=ABPA=10(55)=(155)cm故答案为(155)【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中AC=AB17、 【解析】投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,其概率是=【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=18、3【解析】由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【详解】A'DE与ADE关于直线DE对称,AD=A'D,AE=A'E,C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.故答案为3.【点睛】由图形轴对称可以得到对应的边相等、角相等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、证明见解析【解析】根据平行线性质得出A=B,根据SAS证ACDBEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可【详解】ADBE,AB在ACD和BEC中,ACDBEC(SAS),DCCE CF平分DCE,CFDE(三线合一)【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力20、(1)16、84°;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)【解析】(1)根据百分比所长人数÷总人数,圆心角百分比,计算即可;(2)根据中位数的定义计算即可;(3)用一半估计总体的思考问题即可;【详解】(1)由题意总人数人,D组人数人;B组的圆心角为;(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人【点睛】本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.21、 (1)证明见解析;(2)AC , CD ,【解析】分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AOBC,再由等腰三角形的性质即可得出结论;(2)延长CD交O于E,连接BE,则CE是O的直径,由圆周角定理得出EBC=90°,E=BAC,得出sinE=sinBAC,求出CE=BC=10,由勾股定理求出BE=8,证出BEOA,得出,求出OD=,得出CD=,而BEOA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在RtACH中,由勾股定理求出AC的长即可本题解析:解:(1)证明:延长AO交BC于H,连接BO.ABAC,OBOC,A,O在线段BC的垂直平分线上AOBC.又ABAC,AO平分BAC.(2)延长CD交O于E,连接BE,则CE是O的直径EBC90°,BCBE.EBAC,sinEsinBAC.CEBC10.BE8,OAOECE5.AHBC,BEOA.,即,解得OD.CD5.BEOA,即BEOH,OCOE,OH是CEB的中位线OHBE4,CHBC3.AH549.在RtACH中,AC3.点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出EBC=90°,E=BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度22、(1)证明见解析;(2)1【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答【详解】(1)四边形ABCD是菱形,ACBD,COD=90°CEOD,DEOC,四边形OCED是平行四边形,又COD=90°,平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2四边形ABCD是菱形,AC=2OC=1,BD=2OD=2,菱形ABCD的面积为:ACBD=×1×2=1,故答案为1【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.23、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);(2)“非常喜欢”频数90,a= ;(3).故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.24、(1)证明见解析;(2)结论:四边形ACDF是矩形理由见解析.【解析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:四边形ABCD是平行四边形,BECD,AB=CD,AFC=DCG,GA=GD,AGF=CGD,AGFDGC,AF=CD,AB=CF(2)解:结论:四边形ACDF是矩形理由:AF=CD,AFCD,四边形ACDF是平行四边形,四边形ABCD是平行四边形,BAD=BCD=120°,FAG=60°,AB=AG=AF,AFG是等边三角形,AG=GF,AGFDGC,FG=CG,AG=GD,AD=CF,四边形ACDF是矩形【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×283×60320元答:购买5副乒乓球拍和3副羽毛球拍共320元26、 (1) 现在平均每天生产1台机器(2) 现在比原计划提前5天完成【解析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台依题意得:,解得:x=1检验x=1是原分式方程的解.(2)由题意得=20-15=5(天)现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.27、(1)y=;y=x+1;(2)ACO=45°;(3)0<x<1.【解析】(1)根据AOB的面积可求AB,得A点坐标从而易求两个函数的解析式;(2)求出C点坐标,在ABC中运用三角函数可求ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围【详解】(1)AOB的面积为1,并且点A在第一象限,k=2,y=;点A的横坐标为1,A(1,2).把A(1,2)代入y=ax+1得,a=1.y=x+1.(2)令y=0,0=x+1,x=1,C(1,0).OC=1,BC=OB+OC=2.AB=CB,ACO=45°.(3)由图象可知,在第一象限,当y>y>0时,0<x<1.在第三象限,当y>y>0时,1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.