江苏省常州市勤业中学2023年中考数学考前最后一卷含解析.doc
-
资源ID:88304676
资源大小:860KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省常州市勤业中学2023年中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1函数在同一直角坐标系内的图象大致是()ABCD2若数a使关于x的不等式组有解且所有解都是2x+60的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A5B4C3D23如图,已知ABC中,C=90°,若沿图中虚线剪去C,则1+2等于( )A90°B135°C270°D315°4我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )ABCD5一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为()AB2C2D46方程x2+2x3=0的解是()Ax1=1,x2=3 Bx1=1,x2=3Cx1=1,x2=3 Dx1=1,x2=37如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()ABCD8一个几何体的三视图如图所示,则该几何体的表面积是()A24+2B16+4C16+8D16+129a、b是实数,点A(2,a)、B(3,b)在反比例函数y=的图象上,则()Aab0Bba0Ca0bDb0a10在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3B4C5D6二、填空题(本大题共6个小题,每小题3分,共18分)11在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_环的成绩12一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是_13小红沿坡比为1:的斜坡上走了100米,则她实际上升了_米14计算的结果为_15如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(1,1),则两个正方形的位似中心的坐标是_16一个几何体的三视图如左图所示,则这个几何体是( )ABCD三、解答题(共8题,共72分)17(8分)如图,以AB边为直径的O经过点P,C是O上一点,连结PC交AB于点E,且ACP=60°,PA=PD试判断PD与O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CECP的值18(8分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半求足球开始飞出到第一次落地时,该抛物线的表达式足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?19(8分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整)请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?20(8分)已知抛物线yax2+(3b+1)x+b3(a0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”(1)当a2,b1时,求该抛物线的“和谐点”;(2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B求实数a的取值范围;若点A,B关于直线yx(+1)对称,求实数b的最小值21(8分)发现如图1,在有一个“凹角A1A2A3”n边形A1A2A3A4An中(n为大于3的整数),A1A2A3A1+A3+A4+A5+A6+An(n4)×180°验证如图2,在有一个“凹角ABC”的四边形ABCD中,证明:ABCA+C+D证明3,在有一个“凹角ABC”的六边形ABCDEF中,证明;ABCA+C+D+E+F360°延伸如图4,在有两个连续“凹角A1A2A3和A2A3A4”的四边形A1A2A3A4An中(n为大于4的整数),A1A2A3+A2A3A4A1+A4+A5+A6+An(n )×180°22(10分)如图所示,ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,EC的延长线交BD于点P(1)把ABC绕点A旋转到图1,BD,CE的关系是 (选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把ABC绕点A旋转,当EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 23(12分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为()请直接写出袋子中白球的个数()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)24如图,ABC是O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形(1)求证:AC=CE;(2)求证:BC2AC2=ABAC;(1)已知O的半径为1若=,求BC的长;当为何值时,ABAC的值最大?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除【详解】当a0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=-0,且a0,则b0,但B中,一次函数a0,b0,排除B故选C2、D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可【详解】不等式组整理得:,由不等式组有解且都是2x+60,即x-3的解,得到-3a-13,即-2a4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键3、C【解析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:四边形的内角和为360°,直角三角形中两个锐角和为90°,1+2=360°(A+B)=360°90°=270°故选:C【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.4、A【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案【详解】该几何体的俯视图是:故选A【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键5、B【解析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解【详解】解:圆内接正六边形的边长是1,圆的半径为1那么直径为2圆的内接正方形的对角线长为圆的直径,等于2圆的内接正方形的边长是1故选B【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答6、B【解析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程【详解】x2+2x-3=0,即(x+3)(x-1)=0,x1=1,x2=3故选:B【点睛】本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法本题运用的是因式分解法7、D【解析】分析:根据相似三角形的性质进行解答即可详解:在平行四边形ABCD中,AECD, EAFCDF, AFBC,EAFEBC, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.8、D【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得【详解】该几何体的表面积为2×22+4×4+×22×4=12+16,故选:D【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算9、A【解析】解:,反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,点A(2,a)、B(3,b)在反比例函数的图象上,ab0,故选A10、A【解析】解:作OCAB于C,连结OA,如图OCAB,AC=BC=AB=×8=1在RtAOC中,OA=5,OC=,即圆心O到AB的距离为2故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、8【解析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x环,根据题意列出一元一次不等式62+x+2×1089解之,得x7x表示环数,故x为正整数且x7,则x的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”不等式,再由不等式的相关知识确定问题的答案.12、15【解析】分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值详解: 当y=127时, 解得:x=43;当y=43时,解得:x=15;当y=15时, 解得 不符合条件则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.13、50【解析】根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果【详解】解:设铅直距离为x,则水平距离为,根据题意得:,解得:(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.14、【解析】根据同分母分式加减运算法则化简即可【详解】原式,故答案为【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键15、(1,0);(5,2).【解析】本题主要考查位似变换中对应点的坐标的变化规律因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点【详解】正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,设AG所在直线的解析式为y=kx+b(k0),解得此函数的解析式为y=x-1,与EC的交点坐标是(1,0);(2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,设AE所在直线的解析式为y=kx+b(k0),解得,故此一次函数的解析式为,同理,设CG所在直线的解析式为y=kx+b(k0),解得,故此直线的解析式为联立得解得,故AE与CG的交点坐标是(-5,-2)故答案为:(1,0)、(-5,-2)16、A【解析】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.【详解】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.主视图中间的线是实线.故选A.【点睛】考查简单几何体的三视图,掌握常见几何体的三视图是解题的关键.三、解答题(共8题,共72分)17、(1)PD是O的切线证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得AOP=2ACP=120°,然后计算出PAD和D的度数,进而可得OPD=90°,从而证明PD是O的切线;(2)连结BC,首先求出CAB=ABC=APC=45°,然后可得AC长,再证明CAECPA,进而可得,然后可得CECP的值试题解析:(1)如图,PD是O的切线证明如下:连结OP,ACP=60°,AOP=120°,OA=OP,OAP=OPA=30°,PA=PD,PAO=D=30°,OPD=90°,PD是O的切线(2)连结BC,AB是O的直径,ACB=90°,又C为弧AB的中点,CAB=ABC=APC=45°,AB=4,AC=Absin45°=C=C,CAB=APC,CAECPA,CPCE=CA2=()2=1考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型18、(1)(或)(2)足球第一次落地距守门员约13米(3)他应再向前跑17米【解析】(1)依题意代入x的值可得抛物线的表达式(2)令y=0可求出x的两个值,再按实际情况筛选(3)本题有多种解法如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD【详解】解:(1)如图,设第一次落地时,抛物线的表达式为由已知:当时即表达式为(或)(2)令(舍去)足球第一次落地距守门员约13米(3)解法一:如图,第二次足球弹出后的距离为根据题意:(即相当于将抛物线向下平移了2个单位)解得(米)答:他应再向前跑17米19、(1)详见解析;(2)40%;(3)105;(4)【解析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论【详解】(1)由条形图知,男生共有:10+20+13+9=52人,女生人数为100-52=48人,参加武术的女生为48-15-8-15=10人,参加武术的人数为20+10=30人,30÷100=30%,参加器乐的人数为9+15=24人,24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%40%答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)500×21%=105(人)答:估计其中参加“书法”项目活动的有105人(4)答:正好抽到参加“器乐”活动项目的女生的概率为【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、(1)()或(1,1);(1)2a17b的最小值是【解析】(1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;(1)抛物线上恒有两个不同的“和谐点”A、B则关于m的方程m=am1+(3b+1)m+b-3的根的判别式=9b1-4ab+11a令y=9b1-4ab+11a,对于任意实数b,均有y2,所以根据二次函数y=9b1-4ab+11的图象性质解答;利用二次函数图象的对称性质解答即可【详解】(1)当a1,b1时,m1m1+4m+14,解得m或m1所以点P的坐标是(,)或(1,1);(1)mam1+(3b+1)m+b3,9b14ab+11a令y9b14ab+11a,对于任意实数b,均有y2,也就是说抛物线y9b14ab+11的图象都在b轴(横轴)上方(4a)14×9×11a22a17由“和谐点”定义可设A(x1,y1),B(x1,y1),则x1,x1是ax1+(3b+1)x+b32的两不等实根,线段AB的中点坐标是:(,)代入对称轴yx(+1),得(+1),3b+1+aa2,2,a1为定值,3b+1+a11,bb的最小值是【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点21、(1)见解析;(2)见解析;(3)1【解析】(1)如图2,延长AB交CD于E,可知ABCBEC+C,BECA+D,即可解答(2)如图3,延长AB交CD于G,可知ABCBGC+C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知A1A2A3+A2A3A4A1+2+A4+4,再找出规律即可解答【详解】(1)如图2,延长AB交CD于E,则ABCBEC+C,BECA+D,ABCA+C+D;(2)如图3,延长AB交CD于G,则ABCBGC+C,BGC180°BGC,BGD3×180°(A+D+E+F),ABCA+C+D+E+F310°;(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,则A1A2A3+A2A3A4A1+2+A4+4,1+3(n22)×180°(A5+A1+An),而2+4310°(1+3)310°(n22)×180°(A5+A1+An),A1A2A3+A2A3A4A1+A4+A5+A1+An(n1)×180°故答案为1【点睛】此题考查多边形的内角和外角,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型22、(1)BD,CE的关系是相等;(2)或;(3)1,1【解析】分析:(1)依据ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,即可BA=CA,BAD=CAE,DA=EA,进而得到ABDACE,可得出BD=CE;(2)分两种情况:依据PDA=AEC,PCD=ACE,可得PCDACE,即可得到=,进而得到PD=;依据ABD=PBE,BAD=BPE=90°,可得BADBPE,即可得到,进而得出PB=,PD=BD+PB=;(3)以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值详解:(1)BD,CE的关系是相等理由:ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,BA=CA,BAD=CAE,DA=EA,ABDACE,BD=CE;故答案为相等(2)作出旋转后的图形,若点C在AD上,如图2所示:EAC=90°,CE=,PDA=AEC,PCD=ACE,PCDACE,PD=;若点B在AE上,如图2所示:BAD=90°,RtABD中,BD=,BE=AEAB=2,ABD=PBE,BAD=BPE=90°,BADBPE,即,解得PB=,PD=BD+PB=+=,故答案为或;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大如图3所示,分两种情况讨论:在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小当小三角形旋转到图中ACB的位置时,在RtACE中,CE=4,在RtDAE中,DE=,四边形ACPB是正方形,PC=AB=3,PE=3+4=1,在RtPDE中,PD=,即旋转过程中线段PD的最小值为1;当小三角形旋转到图中AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD的最大值为1故答案为1,1点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题23、(1)袋子中白球有2个;(2)【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:考点:列表法与树状图法;概率公式24、(1)证明见解析;(2)证明见解析;(1)BC=4;【解析】分析:(1)由菱形知D=BEC,由A+D=BEC+AEC=180°可得A=AEC,据此得证;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证BEFBGA得,即BFBG=BEAB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)设AB=5k、AC=1k,由BC2-AC2=ABAC知BC=2k,连接ED交BC于点M,RtDMC中由DC=AC=1k、MC=BC=k求得DM=k,可知OM=OD-DM=1-k,在RtCOM中,由OM2+MC2=OC2可得答案设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得ABAC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案详解:(1)四边形EBDC为菱形,D=BEC,四边形ABDC是圆的内接四边形,A+D=180°,又BEC+AEC=180°,A=AEC,AC=CE;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,CF=CG=AC,四边形AEFG是C的内接四边形,G+AEF=180°,又AEF+BEF=180°,G=BEF,EBF=GBA,BEFBGA,即BFBG=BEAB,BF=BCCF=BCAC、BG=BC+CG=BC+AC,BE=CE=AC,(BCAC)(BC+AC)=ABAC,即BC2AC2=ABAC;(1)设AB=5k、AC=1k,BC2AC2=ABAC,BC=2k,连接ED交BC于点M,四边形BDCE是菱形,DE垂直平分BC,则点E、O、M、D共线,在RtDMC中,DC=AC=1k,MC=BC=k,DM=,OM=ODDM=1k,在RtCOM中,由OM2+MC2=OC2得(1k)2+(k)2=12,解得:k=或k=0(舍),BC=2k=4;设OM=d,则MD=1d,MC2=OC2OM2=9d2,BC2=(2MC)2=164d2,AC2=DC2=DM2+CM2=(1d)2+9d2,由(2)得ABAC=BC2AC2=4d2+6d+18=4(d)2+,当d=,即OM=时,ABAC最大,最大值为,DC2=,AC=DC=,AB=,此时点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点