江苏省南通市如东县市级名校2023届中考猜题数学试卷含解析.doc
-
资源ID:88304918
资源大小:862KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省南通市如东县市级名校2023届中考猜题数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,则在本次测试中,成绩更稳定的同学是()A甲B乙C甲乙同样稳定D无法确定2如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB添加一个条件,不能使四边形DBCE成为矩形的是( )AAB=BEBBEDCCADB=90°DCEDE3二次函数ya(xm)2n的图象如图,则一次函数ymx+n的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限4如图是二次函数的图象,有下面四个结论:;,其中正确的结论是 ABCD5已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,46如图,平行四边形ABCD中,点A在反比例函数y=(k0)的图象上,点D在y轴上,点B、点C在x轴上若平行四边形ABCD的面积为10,则k的值是()A10B5C5D107某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )ABCD8如图,直角三角形ABC中,C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )A2B+C+2D229已知a-2b=-2,则4-2a+4b的值是()A0B2C4D810如图,等腰直角三角形纸片ABC中,C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()CDE=DFB;BDCE;BC=CD;DCE与BDF的周长相等A1个B2个C3个D4个二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是_结果保留12将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_个五角星.13若反比例函数y=的图象位于第一、三象限,则正整数k的值是_14如图,在RtABC中,AC=4,BC=3,将RtABC以点A为中心,逆时针旋转60°得到ADE,则线段BE的长度为_15钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为_16如图,在ABCD中,用直尺和圆规作BAD的平分线AG,若AD5,DE6,则AG的长是_三、解答题(共8题,共72分)17(8分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图请根据有关信息解答: (1)接受测评的学生共有_人,扇形统计图中“优”部分所对应扇形的圆心角为_°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率18(8分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的_倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?19(8分)已知抛物线y=2x2+4x+c(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(1,0),求方程2x2+4x+c=0的根20(8分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B求抛物线的解析式;判断ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若SOPA=2SOQA,试求出点P的坐标21(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A非常了解,B比较了解,C基本了解,D不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率22(10分)化简:(x7)(x6)(x2)(x1)23(12分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?24已知:如图,在RtABO中,B=90°,OAB=10°,OA=1以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,P与x轴的另一交点为N,点M在P上,且满足MPN=60°P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积(探究)当P和ABO的边所在的直线相切时,求点P的坐标(拓展)当与RtABO的边有两个交点时,请你直接写出t的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S甲2=1.4,S乙2=2.5,S甲2S乙2,甲、乙两名同学成绩更稳定的是甲;故选A【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定2、B【解析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答【详解】四边形ABCD为平行四边形,ADBC,AD=BC,又AD=DE,DEBC,且DE=BC,四边形BCED为平行四边形,A、AB=BE,DE=AD,BDAE,DBCE为矩形,故本选项错误;B、对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、ADB=90°,EDB=90°,DBCE为矩形,故本选项错误;D、CEDE,CED=90°,DBCE为矩形,故本选项错误,故选B【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.3、A【解析】由抛物线的顶点坐标在第四象限可得出m0,n0,再利用一次函数图象与系数的关系,即可得出一次函数ymx+n的图象经过第一、二、三象限【详解】解:观察函数图象,可知:m0,n0,一次函数ymx+n的图象经过第一、二、三象限故选A【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k0,b0ykx+b的图象在一、二、三象限”是解题的关键4、D【解析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故正确.时,由图像可知此时,即,故正确.由对称轴,可得,所以错误,故错误;当时,由图像可知此时,即,将中变形为,代入可得,故正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。5、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.6、A【解析】作AEBC于E,由四边形ABCD为平行四边形得ADx轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCDS矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE|k|,利用反比例函数图象得到【详解】作AEBC于E,如图,四边形ABCD为平行四边形,ADx轴,四边形ADOE为矩形,S平行四边形ABCDS矩形ADOE,而S矩形ADOE|k|,|k|1,k0,k1故选A【点睛】本题考查了反比例函数y(k0)系数k的几何意义:从反比例函数y(k0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|7、D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程详解:设2016年的国内生产总值为1,2017年国内生产总值(GDP)比2016年增长了12%,2017年的国内生产总值为1+12%;2018年比2017年增长7%, 2018年的国内生产总值为(1+12%)(1+7%),这两年GDP年平均增长率为x%, 2018年的国内生产总值也可表示为:,可列方程为:(1+12%)(1+7%)=故选D点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值8、D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -SABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CDC=90°,AC=2,AB=4,BC=2阴影部分的面积= S半圆ACD +S半圆BCD -SABC= =.故选:D点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -SABC是解答本题的关键.9、D【解析】a-2b=-2,-a+2b=2,-2a+4b=4,4-2a+4b=4+4=8,故选D.10、D【解析】等腰直角三角形纸片ABC中,C=90°,A=B=45°,由折叠可得,EDF=A=45°,CDE+BDF=135°,DFB+B=135°,CDE=DFB,故正确;由折叠可得,DE=AE=3,CD=,BD=BCDC=41,BDCE,故正确;BC=4,CD=4,BC=CD,故正确;AC=BC=4,C=90°,AB=4,DCE的周长=1+3+2=4+2,由折叠可得,DF=AF,BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(42)=4+2,DCE与BDF的周长相等,故正确;故选D点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案【详解】由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6故答案为6【点睛】本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键12、1【解析】寻找规律:不难发现,第1个图形有3=221个小五角星;第2个图形有8=321个小五角星;第3个图形有15=421个小五角星;第n个图形有(n1)21个小五角星第10个图形有1121=1个小五角星13、1【解析】由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可【详解】解:反比例函数的图象在一、三象限,2k0,即k2又k是正整数,k的值是:1故答案为:1【点睛】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限14、【解析】连接CE,作EFBC于F,根据旋转变换的性质得到CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,ACE=60°,根据直角三角形的性质、勾股定理计算即可【详解】解:连接CE,作EFBC于F,由旋转变换的性质可知,CAE=60°,AC=AE,ACE是等边三角形,CE=AC=4,ACE=60°,ECF=30°,EF=CE=2,由勾股定理得,CF= = ,BF=BC-CF= ,由勾股定理得,BE= ,故答案为:【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键15、【解析】解:将170000用科学记数法表示为:1.7×1故答案为1.7×116、2【解析】试题解析:连接EG,由作图可知AD=AE,AG是BAD的平分线,1=2,AGDE,OD=DE=1四边形ABCD是平行四边形,CDAB,2=1,1=1,AD=DGAGDE,OA=AG在RtAOD中,OA=4,AG=2AO=2故答案为2.三、解答题(共8题,共72分)17、 (1)80,135°,条形统计图见解析;(2)825人;(3)图表见解析,(抽到1男1女) 【解析】试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.试题解析:(1)80,135°; 条形统计图如图所示(2)该校对安全知识达到“良”程度的人数:(人)(3)解法一:列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女) 女1女2女3男1男2女1-女2女1女3女1男1女1男2女1女2女1女2-女3女2男1女2男2女2女3女1女3女2女3-男1女3男2女3男1女1男1女2男1女3男1-男2男1男2女1男2女2男2女3男2男1男2-解法二:画树状图如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女) 18、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答【详解】解:(1)依题意得:(3+2)÷(32)5故答案是:5;(2)依题意得:a+2+1a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a1+x2axa+1所以 a+3xa+3(a+1)2答:第三次变化后中间小桶中有2个小球【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答19、 (1)c2;(2) x1=1,x2=1【解析】(1)根据抛物线与x轴有两个交点,b2-4ac0列不等式求解即可;(2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答【详解】(1)解:抛物线与x轴有两个交点,b24ac0,即16+8c0,解得c2;(2)解:由y=2x2+4x+c得抛物线的对称轴为直线x=1,抛物线经过点(1,0),抛物线与x轴的另一个交点为(1,0),方程2x2+4x+c=0的根为x1=1,x2=1【点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性20、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案【详解】解:(1)由题意得:,解得:,抛物线的解析式为y=-x2+2x+2;(2)由y=-x2+2x+2得:当x=0时,y=2,B(0,2),由y=-(x-1)2+3得:C(1,3),A(3,-1),AB=3,BC=,AC=2,AB2+BC2=AC2,ABC=90°,ABC是直角三角形;(3)如图,当点Q在线段AP上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=AQPEAD,PQEAQD,=1,PE=AD=1由-x2+2x+2=1得:x=1,P(1+,1)或(1-,1),如图,当点Q在PA延长线上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=3AQPEAD,PQEAQD,=3,PE=3AD=3由-x2+2x+2=-3得:x=1±,P(1+,-3),或(1-,-3),综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键21、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为【解析】【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;(3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C所对应扇形的圆心角度数是360°×=90°, 故答案为60、90°;(2)D类型人数为60×5%=3,则B类型人数为60(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.22、2x40.【解析】原式利用多项式乘以多项式法则计算,去括号合并即可.【详解】解:原式x26x7x42x2x2x22x40.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键23、(1)150人;(2)补图见解析;(3)144°;(4)300盒【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%150人;(2)C类别人数为150(30+45+15)60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×144°故答案为144°(4)600×()300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.24、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析【解析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论【详解】发现(3)P(2,0),OP=2OA=3,AP=3,的长度为故答案为;(2)设P半径为r,则有r=23=3,当t=2时,如图3,点N与点A重合,PA=r=3,设MP与AB相交于点Q在RtABO中,OAB=30°,MPN=60°PQA=90°,PQPA,AQ=AP×cos30°,S重叠部分=SAPQPQ×AQ即重叠部分的面积为探究如图2,当P与直线AB相切于点C时,连接PC,则有PCAB,PC=r=3OAB=30°,AP=2,OP=OAAP=32=3;点P的坐标为(3,0); 如图3,当P与直线OB相切于点D时,连接PD,则有PDOB,PD=r=3,PDAB,OPD=OAB=30°,cosOPD,OP,点P的坐标为(,0);如图2,当P与直线OB相切于点E时,连接PE,则有PEOB,同可得:OP;点P的坐标为(,0); 拓展t的取值范围是2t3,2t4,理由:如图4,当点N运动到与点A重合时,与RtABO的边有一个公共点,此时t=2;当t2,直到P运动到与AB相切时,由探究得:OP=3,t3,与RtABO的边有两个公共点,2t3如图6,当P运动到PM与OB重合时,与RtABO的边有两个公共点,此时t=2;直到P运动到点N与点O重合时,与RtABO的边有一个公共点,此时t=4;2t4,即:t的取值范围是2t3,2t4【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键