江苏省江都区国际校2022-2023学年中考数学全真模拟试题含解析.doc
-
资源ID:88305014
资源大小:662KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省江都区国际校2022-2023学年中考数学全真模拟试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知正比例函数的图象经过点,则此正比例函数的关系式为( )ABCD2下列运算正确的是()Ax4+x4=2x8 B(x2)3=x5 C(xy)2=x2y2 Dx3x=x43分别写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )ABCD4哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A BC D5如图,由四个正方体组成的几何体的左视图是( )ABCD6若kb0,则一次函数的图象一定经过( )A第一、二象限B第二、三象限C第三、四象限D第一、四象限7一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米其中正确的个数有()A1个B2个C3个D4个8如图,在平行四边形ABCD中,ABC的平分线BF交AD于点F,FEAB若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A48B35C30D249二次函数y=ax2+bx+c(a0)的图象如图,a,b,c的取值范围( )Aa<0,b<0,c<0 Ba<0,b>0,c<0Ca>0,b>0,c<0 Da>0,b<0,c<010某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,1老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”如果令其中i1,2,1;j1,2,1则a1,1a1,2+a2,1a2,2+a3,1a3,2+a1,1a1,2表示的实际意义是()A同意第1号或者第2号同学当选的人数B同时同意第1号和第2号同学当选的人数C不同意第1号或者第2号同学当选的人数D不同意第1号和第2号同学当选的人数二、填空题(共7小题,每小题3分,满分21分)11如图,在ABC中,C=90°,D是AC上一点,DEAB于点E,若AC=8,BC=6,DE=3,则AD的长为 _ 12如图,已知ABCD,=_13如图,为了测量河宽AB(假设河的两岸平行),测得ACB30°,ADB60°,CD60m,则河宽AB为 m(结果保留根号)14在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_15王经理到襄阳出差带回襄阳特产孔明菜若干袋,分给朋友们品尝如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_袋16如图,A,B两点被池塘隔开,不能直接测量其距离于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AMAC,BNBC,测得MN200m,则A,B间的距离为_m17解不等式组 请结合题意填空,完成本题的解答()解不等式,得 ;()解不等式,得 ;()把不等式和的解集在数轴上表示出来:()原不等式组的解集为 三、解答题(共7小题,满分69分)18(10分)如图,已知AB是圆O的直径,F是圆O上一点,BAF的平分线交O于点E,交O的切线BC于点C,过点E作EDAF,交AF的延长线于点D求证:DE是O的切线;若DE3,CE2. 求的值;若点G为AE上一点,求OG+EG最小值19(5分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 20(8分)如图,已知AB是O的直径,CD与O相切于C,BECO(1)求证:BC是ABE的平分线;(2)若DC=8,O的半径OA=6,求CE的长21(10分)如图,在AOB中,ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且BOD的面积SBOD=1求反比例函数解析式;求点C的坐标22(10分)解不等式组并写出它的整数解23(12分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为 ,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率24(14分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H(1)观察猜想如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是 ;AHB (2)探究证明如图2,当四边形ABCD和FFCG均为矩形,且ACBECF30°时,(1)中的结论是否仍然成立,并说明理由(3)拓展延伸在(2)的条件下,若BC9,FC6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据待定系数法即可求得【详解】解:正比例函数y=kx的图象经过点(1,3),3=k,即k=3,该正比例函数的解析式为:y=3x故选A【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题2、D【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (xy)2=x22xy+y2 ,故错误; D. x3x=x4,正确,故选D.3、B【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.4、D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得故选D考点:由实际问题抽象出二元一次方程组5、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.6、D【解析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解【详解】kb<0,k、b异号。当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。故选:D【点睛】此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系7、D【解析】根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题【详解】由图象可得,出租车的速度为:600÷6=100千米/时,故(1)正确,客车的速度为:600÷10=60千米/时,故(2)正确,两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,故选D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答8、D【解析】分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积详解:ABEF,AFBE, 四边形ABEF为平行四边形, BF平分ABC,四边形ABEF为菱形, 连接AE交BF于点O, BF=6,BE=5,BO=3,EO=4,AE=8,则四边形ABEF的面积=6×8÷2=24,故选D点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型解决本题的关键就是根据题意得出四边形为菱形9、D【解析】试题分析:根据二次函数的图象依次分析各项即可。由抛物线开口向上,可得,再由对称轴是,可得,由图象与y轴的交点再x轴下方,可得,故选D.考点:本题考查的是二次函数的性质点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。10、B【解析】先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加【详解】第1,2,3,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,a1,1来确定,是否同意第2号同学当选依次由a1,2,a2,2,a3,2,a1,2来确定,a1,1a1,2+a2,1a2,2+a3,1a3,2+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,故选B【点睛】本题考查了推理应用题,题目比较新颖,是基础题二、填空题(共7小题,每小题3分,满分21分)11、1【解析】如图,由勾股定理可以先求出AB的值,再证明AEDACB,根据相似三角形的性质就可以求出结论【详解】在RtABC中,由勾股定理得AB=10,DEAB,AED=C=90°A=A,AEDACB,AD=1故答案为1【点睛】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出AEDACB是解答本题的关键12、85°【解析】如图,过F作EFAB,而ABCD,ABCDEF,ABF+BFE=180°,EFC=C,=180°ABF+C=180°120°+25°=85°故答案为85°.13、【解析】解:ACB=30°,ADB=60°,CAD=30°,AD=CD=60m,在RtABD中,AB=ADsinADB=60×=(m).故答案是:.14、【解析】设PM=x,根据黄金分割的概念列出比例式,计算即可【详解】设PM=x,则PN=1-x,由得,化简得:x2+x-1=0,解得:x1,x2(负值舍去),所以PM的长为【点睛】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割15、33.【解析】试题分析:设品尝孔明菜的朋友有x人,依题意得,5x36x3,解得x6,所以孔明菜有5x333袋.考点:一元一次方程的应用.16、1【解析】AM=AC,BN=BC,AB是ABC的中位线,AB=MN=1m,故答案为117、详见解析.【解析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【详解】()解不等式,得:x1;()解不等式,得:x1;()把不等式和的解集在数轴上表示出来:()原不等式组的解集为:1x1,故答案为:x1、x1、1x1【点睛】本题考查了解一元一次不等式组的概念.三、解答题(共7小题,满分69分)18、(1)证明见解析(2) 3【解析】(1)作辅助线,连接OE根据切线的判定定理,只需证DEOE即可;(2)连接BE根据BC、DE两切线的性质证明ADEBEC;又由角平分线的性质、等腰三角形的两个底角相等求得ABEAFD,所以;连接OF,交AD于H,由得FOE=FOA=60°,连接EF,则AOF、EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GMOE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.【详解】(1)连接OEOA=OE,AEO=EAOFAE=EAO,FAE=AEOOEAFDEAF,OEDEDE是O的切线(2)解:连接BE直径AB AEB=90°圆O与BC相切ABC=90°EAB+EBA=EBA+CBE=90°EAB=CBEDAE=CBEADE=BEC=90°ADEBEC 连接OF,交AE于G,由,设BC=2x,则AE=3xBECABC 解得:x1=2,(不合题意,舍去)AE=3x=6,BC=2x=4,AC=AE+CE=8AB=,BAC=30°AEO=EAO=EAF=30°,FOE=2FAE=60°FOE=FOA=60°,连接EF,则AOF、EOF都是等边三角形,四边形AOEF是菱形由对称性可知GO=GF,过点G作GMOE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质比较复杂,解答此题的关键是作出辅助线,利用数形结合解答19、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可; (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到: (1)联结CE分类讨论:(i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,利用勾股定理求得a的值; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答详解:(1)顶点C在直线x=2上,b=4a 将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=4,抛物线的解析式为y=x24x+1 (2)过点C作CMx轴,CNy轴,垂足分别为M、N y=x24x+1(x2)21,C(2,1) CM=MA=1,MAC=45°,ODA=45°,OD=OA=1 抛物线y=x24x+1与y轴交于点B,B(0,1),BD=2 抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积, (1)联结CE 四边形BCDE是平行四边形,点O是对角线CE与BD的交点,即 (i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,即 a2=(a2)2+5,解得: ,点 同理,得点; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、 综上所述:满足条件的点有), 点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键20、(1)证明见解析;(2)4.1【解析】试题分析:(1)由BECO,推出OCB=CBE,由OC=OB,推出OCB=OBC,可得CBE=CBO;(2)在RtCDO中,求出OD,由OCBE,可得,由此即可解决问题;试题解析:(1)证明:DE是切线,OCDE,BECO,OCB=CBE,OC=OB,OCB=OBC,CBE=CBO,BC平分ABE(2)在RtCDO中,DC=1,OC=0A=6,OD=10,OCBE,EC=4.1考点:切线的性质21、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)【解析】(1)由SBOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标【详解】(1)ABO=90°,OB=1,SBOD=1,OB×BD=1,解得BD=2,D(1,2)将D(1,2)代入y=,得2=,k=8,反比例函数解析式为y=;(2)ABO=90°,OB=1,AB=8,A点坐标为(1,8),设直线OA的解析式为y=kx,把A(1,8)代入得1k=8,解得k=2,直线AB的解析式为y=2x,解方程组得或,C点坐标为(2,1).22、不等式组的解集是5x1,整数解是6,1【解析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】解得:x5,解不等式得:x1,不等式组的解集是5x1,不等式组的整数解是6,1【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法23、(1)4,补全统计图见详解.(2)10;20;72.(3)见详解.【解析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解【详解】解: (1)九(1)班的学生人数为:12÷30%=40(人),喜欢足球的人数为:4041216=4032=8(人),补全统计图如图所示;(2)×100%=10%,×100%=20%,m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;故答案为(1)40;(2)10;20;72;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,P(恰好是1男1女)=.24、(1),45°;(2)不成立,理由见解析;(3) .【解析】(1)由正方形的性质,可得 ,ACBGEC45°,求得CAECBF,由相似三角形的性质得到,CAB45°,又因为CBA90°,所以AHB45°.(2)由矩形的性质,及ACBECF30°,得到CAECBF,由相似三角形的性质可得CAECBF,,则CAB60°,又因为CBA90°,求得AHB30°,故不成立.(3)分两种情况讨论:作BMAE于M,因为A、E、F三点共线,及AFB30°,AFC90°,进而求得AC和EF ,根据勾股定理求得AF,则AEAFEF,再由(2)得: ,所以BF33,故BM .如图3所示:作BMAE于M,由A、E、F三点共线,得:AE6+2,BF3+3,则BM.【详解】解:(1)如图1所示:四边形ABCD和EFCG均为正方形, ,ACBGEC45°, ACEBCF,CAECBF,CAECBF,CABCAE+EABCBF+EAB45°,CBA90°,AHB180°90°45°45°,故答案为,45°; (2)不成立;理由如下:四边形ABCD和EFCG均为矩形,且ACBECF30°,ACEBCF,CAECBF,CAECBF,,CABCAE+EABCBF+EAB60°,CBA90°,AHB180°90°60°30°;(3)分两种情况:如图2所示:作BMAE于M,当A、E、F三点共线时,由(2)得:AFB30°,AFC90°,在RtABC和RtCEF中,ACBECF30°,AC,EFCF×tan30°6× 2 ,在RtACF中,AF ,AEAFEF6 2,由(2)得: ,BF (62)33,在BFM中,AFB30°,BMBF ;如图3所示:作BMAE于M,当A、E、F三点共线时,同(2)得:AE6+2,BF3+3,则BMBF;综上所述,当A、E、F三点共线时,点B到直线AE的距离为 【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.