江苏省无锡市江阴市青阳第二中学2023年中考数学最后冲刺模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列命题是真命题的是( )A如实数a,b满足a2b2,则abB若实数a,b满足a0,b0,则ab0C“购买1张彩票就中奖”是不可能事件D三角形的三个内角中最多有一个钝角2一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟,则列方程正确的是()ABCD3如图,在矩形ABCD中,AD=1,AB1,AG平分BAD,分别过点B,C作BEAG 于点E,CFAG于点F,则AEGF的值为( )A1BCD4下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A B C D5如图所示的几何体的左视图是( )ABCD6一元二次方程4x22x+=0的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断7如图,在矩形ABCD中,E是AD上一点,沿CE折叠CDE,点D恰好落在AC的中点F处,若CD,则ACE的面积为()A1BC2D28如果一次函数y=kx+b(k、b是常数,k0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )Ak0,且b0Bk0,且b0Ck0,且b0Dk0,且b09已知一组数据,的平均数是2,方差是,那么另一组数据,的平均数和方差分别是ABCD10如图,已知ABC中,ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )AB4CD二、填空题(共7小题,每小题3分,满分21分)11分解因式:_.12如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点若DE=1,则DF的长为_13使有意义的x的取值范围是_14方程的解是 15关于x的分式方程=2的解为正实数,则实数a的取值范围为_16如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=_17计算的结果为_三、解答题(共7小题,满分69分)18(10分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转(090°)得到矩形AEFG延长CB与EF交于点H (1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长19(5分) (1)计算:(2)先化简,再求值:,其中x是不等式的负整数解.20(8分)如图,在中,ABAC,点D是BC的中点,DEAB于点E,DFAC于点F. (1)EDB_(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形;写出DM与DN的数量关系并证明;用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.21(10分)(1)解方程:x25x6=0;(2)解不等式组:22(10分)如图,在菱形ABCD中,对角线AC与BD交于点O过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 23(12分)如图,抛物线y=ax2+ax12a(a0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N(1)求点A、B的坐标;(2)若BN=MN,且SMBC=,求a的值;(3)若BMC=2ABM,求的值24(14分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得ADP=60°,然后沿河岸走了110米到达C处,测得BCP=30°,求这条河的宽(结果保留根号)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2b2,则a±b,A是假命题;数a,b满足a0,b0,则ab0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键2、C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大3、D【解析】设AE=x,则AB=x,由矩形的性质得出BAD=D=90°,CD=AB,证明ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.【详解】设AE=x,四边形ABCD是矩形,BAD=D=90°,CD=AB,AG平分BAD,DAG=45°,ADG是等腰直角三角形,DG=AD=1,AG=AD=,同理:BE=AE=x, CD=AB=x,CG=CD-DG=x -1,同理: CG=GF,FG= ,AE-GF=x-(x-)=.故选D.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.4、C【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.5、A【解析】本题考查的是三视图左视图可以看到图形的排和每排上最多有几层所以选择A6、B【解析】试题解析:在方程4x22x+ =0中,=(2)24×4× =0,一元二次方程4x22x+=0有两个相等的实数根故选B考点:根的判别式7、B【解析】由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求ACE的面积【详解】解:点F是AC的中点,AF=CF=AC,将CDE沿CE折叠到CFE,CD=CF=,DE=EF,AC=,在RtACD中,AD=1SADC=SAEC+SCDE,×AD×CD=×AC×EF+×CD×DE1×=EF+DE,DE=EF=1,SAEC=××1=故选B【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键8、B【解析】试题分析:一次函数y=kx+b(k、b是常数,k0)的图象经过第一、二、四象限,k0,b0,故选B考点:一次函数的性质和图象9、D【解析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可【详解】解:数据x1,x2,x3,x4,x5的平均数是2,数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;数据x1,x2,x3,x4,x5的方差为,数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.10、B【解析】求出ADBD,根据FBDC90°,CADC90°,推出FBDCAD,根据ASA证FBDCAD,推出CDDF即可【详解】解:ADBC,BEAC,ADB=AEB=ADC=90°,EAF+AFE=90°,FBD+BFD=90°,AFE=BFD,EAF=FBD,ADB=90°,ABC=45°,BAD=45°=ABC,AD=BD,在ADC和BDF中 ,ADCBDF,DF=CD=4,故选:B【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件二、填空题(共7小题,每小题3分,满分21分)11、a(a 4)2【解析】首先提取公因式a,进而利用完全平方公式分解因式得出即可【详解】 故答案为:【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.12、1.1【解析】求出EC,根据菱形的性质得出ADBC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可【详解】DE=1,DC=3,EC=3-1=2,四边形ABCD是菱形,ADBC,DEFCEB,DF=1.1,故答案为1.1【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明DEFCEB,然后根据相似三角形的性质可求解.13、【解析】二次根式有意义的条件【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须14、x=1【解析】根据解分式方程的步骤解答即可.【详解】去分母得:2x=3x1,解得:x=1,经检验x=1是分式方程的解,故答案为x=1【点睛】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键15、a2且a1【解析】将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围【详解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,分式方程的解为正实数,2-a>0,且2-a1,解得:a2且a1故答案为:a2且a1【点睛】分式方程的解16、4【解析】点C是线段AD的中点,若CD=1,AD=1×2=2,点D是线段AB的中点,AB=2×2=4,故答案为4.17、2【解析】根据分式的运算法则即可得解.【详解】原式,故答案为:【点睛】本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.三、解答题(共7小题,满分69分)18、(1)见解析;(2)B点经过的路径长为【解析】(1)、连接AH,根据旋转图形的性质得出AB=AE,ABH=AEH=90°,根据AH为公共边得出RtABH和RtAEH全等,从而得出答案;(2)、根据题意得出EAB的度数,然后根据弧长的计算公式得出答案【详解】(1)、证明:如图1中,连接AH,由旋转可得AB=AE,ABH=AEH=90°,又AH=AH,RtABHRtAEH,BH=EH(2)、解:由旋转可得AG=AD=4,AE=AB,EAG=BAC=90°,在RtABG中,AG=4,AB=2,cosBAG=,BAG=30°,EAB=60° ,弧BE的长为=,即B点经过的路径长为【点睛】本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型明白旋转图形的性质是解决这个问题的关键19、(1)5;(2),3.【解析】试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;(2)先化简,再求得x的值,代入计算即可试题解析:(1)原式121×245;(2)原式×,当3x71,即 x2时的负整数时,(x1)时,原式3.20、(1);(2)(2)见解析;DMDN,理由见解析;数量关系:【解析】(1)先利用等腰三角形的性质和三角形内角和得到B=C=90°,然后利用互余可得到EDB=;(2)如图,利用EDF=180°2画图;先利用等腰三角形的性质得到DA平分BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到EDF=180°2,所以MDE=NDF,然后证明MDENDF得到DM=DN;先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsin,从而有BM+CN=BCsin【详解】(1)AB=AC,B=C(180°A)=90°DEAB,DEB=90°,EDB=90°B=90°(90°)=故答案为:;(2)如图:DM=DN理由如下:AB=AC,BD=DC,DA平分BACDEAB于点E,DFAC于点F,DE=DF,MED=NFD=90°A=2,EDF=180°2MDN=180°2,MDE=NDF在MDE和NDF中,MDENDF,DM=DN;数量关系:BM+CN=BCsin证明思路为:先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,所以BM+CN=BE+EM+CFFN=2BE,接着在RtBDE可得BE=BDsin,从而有BM+CN=BCsin【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质21、(1)x1=6,x2=1;(2)1x1【解析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式组的解集即可【详解】(1)x25x6=0,(x6)(x+1)=0,x6=0,x+1=0,x1=6,x2=1;(2)解不等式得:x1,解不等式得:x1,不等式组的解集为1x1【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键22、(1)证明见解析;(2)1【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答【详解】(1)四边形ABCD是菱形,ACBD,COD=90°CEOD,DEOC,四边形OCED是平行四边形,又COD=90°,平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2四边形ABCD是菱形,AC=2OC=1,BD=2OD=2,菱形ABCD的面积为:ACBD=×1×2=1,故答案为1【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.23、(1)A(4,0),B(3,0);(2);(3).【解析】(1)设y=0,可求x的值,即求A,B的坐标;(2)作MDx轴,由COMD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据SBMC=,可求a的值;(3)过M点作MEAB,设NO=m,k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果【详解】(1)设y=0,则0=ax2+ax12a (a0),x1=4,x2=3,A(4,0),B(3,0)(2)如图1,作MDx轴,MDx轴,OCx轴,MDOC,=且NB=MN,OB=OD=3,D(3,0),当x=3时,y=6a,M(3,6a),MD=6a,ONMD,ON=3a,根据题意得:C(0,12a),SMBC=,(12a+3a)×6=,a=,(3)如图2:过M点作MEAB,MEAB,EMB=ABM且CMB=2ABM,CME=NME,且ME=ME,CEM=NEM=90°,CMEMNE,CE=EN,设NO=m,=k(k0),MEAB,=k,ME=3k,EN=km=CE,EO=km+m,CO=CE+EN+ON=2km+m=12a,即,M(3k,km+m),km+m=a(9k23k12),(k+1)×=(k+1)(9k12),=9k-12,k=,.【点睛】本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大24、米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AEPQ于E,CFMN于F.PQMN,四边形AECF为矩形,EC=AF,AE=CF.设这条河宽为x米,AE=CF=x.在RtAED中, PQMN, 在RtBCF中, EC=ED+CD,AF=AB+BF, 解得 这条河的宽为米.