江苏省盐城市东台市2023年中考数学押题卷含解析.doc
-
资源ID:88305187
资源大小:822.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省盐城市东台市2023年中考数学押题卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队员年龄的众数、中位数分别是( )A20,19B19,19C19,20.5D19,202如图所示,在平面直角坐标系中A(0,0),B(2,0),AP1B是等腰直角三角形,且P1=90°,把AP1B绕点B顺时针旋转180°,得到BP2C;把BP2C绕点C顺时针旋转180°,得到CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A(4030,1)B(4029,1)C(4033,1)D(4035,1)3如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD4抛物线ymx28x8和x轴有交点,则m的取值范围是()Am2Bm2Cm2且m0Dm2且m05某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A5.035×106B50.35×105C5.035×106D5.035×1056如图,在O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:ABCD; AOB=4ACD;弧AD=弧BD;PO=PD,其中正确的个数是()A4B1C2D37下列运算正确的是()A5a+2b=5(a+b)Ba+a2=a3C2a33a2=6a5D(a3)2=a58如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )ABCD9下面计算中,正确的是()A(a+b)2=a2+b2 B3a+4a=7a2C(ab)3=ab3 Da2a5=a710设点和是反比例函数图象上的两个点,当时,则一次函数的图象不经过的象限是A第一象限B第二象限C第三象限D第四象限二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_12若关于x的函数与x轴仅有一个公共点,则实数k的值为 .13如图,直线yx2与反比例函数y的图象在第一象限交于点P.若OP,则k的值为_ 14如图,在平面直角坐标系中,OB在x轴上,ABO90°,点A的坐标为(2,4),将AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y的图象上,则k的值为_15 “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费若设参加游览的同学一共有x人,为求x,可列方程_16为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_三、解答题(共8题,共72分)17(8分)已知:如图.D是的边上一点,交于点M,.(1)求证:;(2)若,试判断四边形的形状,并说明理由.18(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD求证:AB=AF;若AG=AB,BCD=120°,判断四边形ACDF的形状,并证明你的结论19(8分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元(1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:型号A型B型购进数量(盏)x_购买费用(元)_(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?20(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A,连接AB交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(2,)两点(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m2,APB=,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a0)的等角点,且点P位于直线AB的右下方,当APB=60°时,求b的取值范围(直接写出结果)21(8分)在矩形ABCD中,两条对角线相交于O,AOB=60°,AB=2,求AD的长22(10分)先化简:()÷,再从2,1,0,1这四个数中选择一个合适的数代入求值23(12分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“非常喜欢”、“ 比较喜欢”、“ 不太喜欢”、“ 很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计现将统计结果绘制成如下两幅不完整的统计图请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是,图中所在扇形对应的圆心角是;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?24一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1故选D【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数也考查了中位数的定义2、D【解析】根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决【详解】解:由题意可得,点P1(1,1),点P2(3,-1),点P3(5,1),P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,即P2018的坐标为(4035,-1),故选:D【点睛】本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标3、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.4、C【解析】根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:抛物线和轴有交点, ,解得:且故选【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键5、A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×106,故选A考点:科学记数法表示较小的数6、D【解析】根据垂径定理,圆周角的性质定理即可作出判断【详解】P是弦AB的中点,CD是过点P的直径ABCD,弧AD=弧BD,故正确,正确;AOB=2AOD=4ACD,故正确P是OD上的任意一点,因而不一定正确故正确的是:故选:D【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.7、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键8、D【解析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置掌握定义是关键此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键9、D【解析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案【详解】A. (a+b)2=a2+b2+2ab,故此选项错误;B. 3a+4a=7a,故此选项错误;C. (ab)3=a3b3,故此选项错误;D. a2×a5=a7,正确。故选:D.【点睛】本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.10、A【解析】点和是反比例函数图象上的两个点,当1时,即y随x增大而增大,根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大故k1根据一次函数图象与系数的关系:一次函数的图象有四种情况:当,时,函数的图象经过第一、二、三象限;当,时,函数的图象经过第一、三、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限因此,一次函数的,故它的图象经过第二、三、四象限,不经过第一象限故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】解:如图,作DFy轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BHx轴于H,四边形ABCD是矩形,BAD=90°,DAF+OAE=90°,AEO+OAE=90°,DAF=AEO,AB=2AD,E为AB的中点,AD=AE,在ADF和EAO中,DAF=AEO,AFD=AOE=90°,AD=AE,ADFEAO(AAS),DF=OA=1,AF=OE,D(1,k),AF=k1,同理;AOEBHE,ADFCBG,BH=BG=DF=OA=1,EH=CG=OE=AF=k1,OK=2(k1)+1=2k1,CK=k2,C(2k1,k2),(2k1)(k2)=1k,解得k1=,k2=,k10,k=故答案为 点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征图象上的点(x,y)的横纵坐标的积是定值k,即xy=k12、0或1。【解析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次函数,与x轴仅有一个公共点。当k0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或1。13、1【解析】设点P(m,m+2),OP=, =,解得m1=1,m2=1(不合题意舍去),点P(1,1),1=,解得k=1点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键14、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值【详解】OB在x轴上,ABO=90°,点A的坐标为(2,4),OB=2,AB=4将AOB绕点A逆时针旋转90°,AD=4,CD=2,且AD/x轴点C的坐标为(6,2),点O的对应点C恰好落在反比例函数y=的图象上,k=2,故答案为1【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答15、 =1【解析】原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:=1故答案是:=116、【解析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可【详解】解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为故答案为:【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比三、解答题(共8题,共72分)17、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.【解析】(1)根据平行得出DAMNCM,根据ASA推出AMDCMN,得出ADCN,推出四边形ADCN是平行四边形即可;(2)根据AMD2MCD,AMDMCDMDC求出MCDMDC,推出MDMC,求出MDMNMAMC,推出ACDN,根据矩形的判定得出即可【详解】证明:(1)CNAB,DAMNCM,在AMD和CMN中,DAMNCMMAMCDMANMC,AMDCMN(ASA),ADCN,又ADCN,四边形ADCN是平行四边形,CDAN;(2)解:四边形ADCN是矩形,理由如下:AMD2MCD,AMDMCDMDC,MCDMDC,MDMC,由(1)知四边形ADCN是平行四边形,MDMNMAMC,ACDN,四边形ADCN是矩形【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中18、(1)证明见解析;(2)结论:四边形ACDF是矩形理由见解析.【解析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:四边形ABCD是平行四边形,BECD,AB=CD,AFC=DCG,GA=GD,AGF=CGD,AGFDGC,AF=CD,AB=CF(2)解:结论:四边形ACDF是矩形理由:AF=CD,AFCD,四边形ACDF是平行四边形,四边形ABCD是平行四边形,BAD=BCD=120°,FAG=60°,AB=AG=AF,AFG是等边三角形,AG=GF,AGFDGC,FG=CG,AG=GD,AD=CF,四边形ACDF是矩形【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.19、(1)30x, y,50y;(2)商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元【解析】(1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得:解得:答:应购进A型台灯75盏,B型台灯2盏故答案为30x;y;50y;(2)设商场应购进A型台灯x盏,销售完这批台灯可获利y元,则y=(4530)x+(7050)(100x)=15x+120x=5x+1,即y=5x+1B型台灯的进货数量不超过A型台灯数量的3倍,100x3x,x2k=50,y随x的增大而减小,x=2时,y取得最大值,为5×2+1=1875(元)答:商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元【点睛】本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键20、(1)C(2)(3)b且b2或b【解析】(1)先求出B关于直线x=4的对称点B的坐标,根据A、B的坐标可得直线AB的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A,连AB,交直线l于点P,作BHl于点H,根据对称性可知APG=APG,由AGP=BHP=90°可证明AGPBHP,根据相似三角形对应边成比例可得m=根据外角性质可知A=A=,在RtAGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a0)与圆相交,设圆与直线y=ax+b(a0)的另一个交点为Q根据对称性质可证明ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a0)与圆相切,易得P、Q重合,所以直线y=ax+b(a0)过定点Q,连OQ,过点A、Q分别作AMy轴,QNy轴,垂足分别为M、N,可证明AMOONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B(10,),直线AB解析式为:y=,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A,连AB,交直线l于点P作BHl于点H点A和A关于直线l对称APG=APGBPH=APGAPG=BPHAGP=BHP=90°AGPBHP,即,mn=2,即m=,APB=,AP=AP,A=A=,在RtAGP中,tan (3)如图,当点P位于直线AB的右下方,APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a0)与圆相交,设圆与直线y=ax+b(a0)的另一个交点为Q由对称性可知:APQ=APQ,又APB=60°APQ=APQ=60°ABQ=APQ=60°,AQB=APB=60°BAQ=60°=AQB=ABQABQ是等边三角形线段AB为定线段点Q为定点若直线y=ax+b(a0)与圆相切,易得P、Q重合直线y=ax+b(a0)过定点Q连OQ,过点A、Q分别作AMy轴,QNy轴,垂足分别为M、NA(2,),B(2,)OA=OB=ABQ是等边三角形AOQ=BOQ=90°,OQ=,AOM+NOD=90°又AOM+MAO=90°,NOQ=MAOAMO=ONQ=90°AMOONQ,,ON=2,NQ=3,Q点坐标为(3,2)设直线BQ解析式为y=kx+b将B、Q坐标代入得 ,解得 ,直线BQ的解析式为:y=,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得 ,直线AQ的解析式为:y=3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又y=ax+b(a0),且点P位于AB右下方,b 且b2或b.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.21、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由AOB=60°可得AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在RtABD中,由勾股定理可解得AD的长.试题解析:四边形ABCD是矩形,OA=OB=OD,BAD=90°,AOB=60°,AOB是等边三角形,OB=OA=2, BD=2OB=4,在RtABD中AD=.22、,1【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可【详解】原式=由题意,x不能取1,1,2,x取2当x=2时,原式=1【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键23、(1)答案见解析;(2)B,54°;(3)240人【解析】(1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D程度的人数即可求出C程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;(2)根据众数的定义即可得出结论,然后利用360°乘A程度的人数所占抽查总人数的百分率即可得出结论;(3)利用960乘C程度的人数所占抽查总人数的百分率即可【详解】解:(1)被调查的学生总人数为人,C程度的人数为人,则的百分比为、的百分比为、的百分比为,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是、图中所在扇形对应的圆心角是故答案为:;(3)该年级学生中对数学学习“不太喜欢”的有人答:该年级学生中对数学学习“不太喜欢”的有240人【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键24、 (1)1;(2) 【解析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得: 解得:=1 经检验:=1是原分式方程的解口袋中黄球的个数为1个(2)画树状图得: 共有12种等可能的结果,两次摸出都是红球的有2种情况两次摸出都是红球的概率为: .【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件