江苏省射阳实验初中2023年中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,ABD的周长为13cm,则ABC的周长为()A16cmB19cmC22cmD25cm2加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系pat2+bt+c(a,b,c是常数),如图记录了三次实验的数据根据上述函数模型和实验数据,可得到最佳加工时间为()A4.25分钟B4.00分钟C3.75分钟D3.50分钟33的相反数是()AB3CD34如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )ABCD5如图,A、B、C、D四个点均在O上,AOD=50°,AODC,则B的度数为()A50° B55° C60° D65°6如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在O上,若过点M作O的一条切线MK,切点为K,则MK()A3B2C5D7一次函数y=2x+1的图像不经过 ( )A第一象限 B第二象限 C第三象限 D第四象限8如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数其中主视图相同的是( )A仅有甲和乙相同B仅有甲和丙相同C仅有乙和丙相同D甲、乙、丙都相同9下列四个实数中是无理数的是( )A2.5 B C D1.41410如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CHAF与点H,那么CH的长是( ) ABCD11如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿ADEFGB的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则ABP的面积S随着时间t变化的函数图象大致是( )ABCD12分别写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13四张背面完全相同的卡片上分别写有0、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为_14如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,按此作法进行去,点Bn的纵坐标为 (n为正整数)15分解因式:3x2-6x+3=_16如果,那么_17若方程 x2+(m21)x+1+m0的两根互为相反数,则 m_18我国明代数学家程大位的名著直指算法统宗里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n(n为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?20(6分)-()-1+3tan60°21(6分)如图,已知CD=CF,A=E=DCF=90°,求证:AD+EF=AE22(8分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?23(8分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案24(10分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入投入总成本)25(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AECF求证:四边形BFDE是平行四边形26(12分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1求a的值;当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围27(12分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,DE垂直平分线段AC,DA=DC,AE=EC=6cm,AB+AD+BD=13cm,AB+BD+DC=13cm,ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质2、C【解析】根据题目数据求出函数解析式,根据二次函数的性质可得【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=0.2,b=1.5,c=2,即p=0.2t2+1.5t2,当t=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.3、B【解析】根据相反数的定义与方法解答.【详解】解:3的相反数为.故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.4、B【解析】连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明BFC=90°,最后利用勾股定理求得CF=【详解】连接BF,由折叠可知AE垂直平分BF,BC=6,点E为BC的中点,BE=3,又AB=4,AE=5,BH=,则BF= ,FE=BE=EC,BFC=90°,CF= 故选B【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键5、D【解析】试题分析:连接OC,根据平行可得:ODC=AOD=50°,则DOC=80°,则AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:B=130°÷2=65°.考点:圆的基本性质6、B【解析】以OM为直径作圆交O于K,利用圆周角定理得到MKO90°从而得到KMOK,进而利用勾股定理求解【详解】如图所示:MK.故选:B【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系7、D【解析】根据一次函数的系数判断出函数图象所经过的象限,由k=20,b=10可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】k=20,b=10,根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.8、B【解析】试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙考点:由三视图判断几何体;简单组合体的三视图9、C【解析】本题主要考查了无理数的定义根据无理数的定义:无限不循环小数是无理数即可求解解:A、2.5是有理数,故选项错误;B、是有理数,故选项错误;C、是无理数,故选项正确;D、1.414是有理数,故选项错误故选C10、D【解析】连接AC、CF,根据正方形性质求出AC、CF,ACD=GCF=45°,再求出ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.【详解】如图,连接AC、CF,正方形ABCD和正方形CEFG中,BC=1,CE=3,AC= ,CF=3,ACD=GCF=45°,ACF=90°,由勾股定理得,AF=,CHAF,即,CH=.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键11、B【解析】解:当点P在AD上时,ABP的底AB不变,高增大,所以ABP的面积S随着时间t的增大而增大;当点P在DE上时,ABP的底AB不变,高不变,所以ABP的面积S不变;当点P在EF上时,ABP的底AB不变,高减小,所以ABP的面积S随着时间t的减小而减小;当点P在FG上时,ABP的底AB不变,高不变,所以ABP的面积S不变;当点P在GB上时,ABP的底AB不变,高减小,所以ABP的面积S随着时间t的减小而减小;故选B12、B【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】在0.、这四个实数种,有理数有0.、这3个,抽到有理数的概率为,故答案为【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=14、【解析】寻找规律: 由直线y=x的性质可知,B2,B3,Bn是直线y=x上的点,OA1B1,OA2B2,OAnBn都是等腰直角三角形,且A2B2=OA2=OB1=OA1;A3B3=OA3=OB2=OA2=OA1;A4B4=OA4=OB3=OA3=OA1;又点A1坐标为(1,0),OA1=1,即点Bn的纵坐标为15、3(x-1)2【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止16、; 【解析】先对等式进行转换,再求解.【详解】3x5x5y2x5y【点睛】本题考查的是分式,熟练掌握分式是解题的关键.17、1【解析】根据“方程 x2+(m21)x+1+m0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可【详解】方程 x2+(m21)x+1+m0 的两根互为相反数,1m20,解得:m1 或1,把 m1代入原方程得:x2+20,该方程无解,m1不合题意,舍去,把 m1代入原方程得: x20,解得:x1x20,(符合题意),m1,故答案为1【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.18、【解析】根据100个和尚分100个馒头,正好分完大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可【详解】设大和尚x人,小和尚y人,由题意可得故答案为【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.【解析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;(2)由(1)的结论结合参会人数为n,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1故答案为3;1(2)参加聚会的人数为n(n为正整数),每人需跟(n-1)人握手,握手总数为故答案为(3)依题意,得:=28,整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去)答:参加聚会的人数为8人拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去)m为正整数,没有符合题意的解,线段总数不可能为2【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程20、0【解析】根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角函数值计算,然后进行加减运算【详解】原式=-2+2-2+3=0.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式也考查了零指数幂、负整数指数幂和特殊角的三角函数值21、证明见解析.【解析】易证DACCEF,即可得证.【详解】证明:DCF=E=90°,DCA+ECF=90°,CFE+ECF=90°,DCA=CFE,在DAC和CEF中:,DACCEF(AAS),AD=CE,AC=EF,AE=AD+EF【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.22、1平方米【解析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论【详解】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:=11,解得:x=500,经检验,x=500是原方程的解,1.2x=1答:实际平均每天施工1平方米【点睛】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程23、(1)甲种材料每千克25元,乙种材料每千克35元(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低【解析】试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元,依题意得:解得:答:甲种材料每千克25元, 乙种材料每千克35元. (2)生产B产品a件,生产A产品(60-a)件. 依题意得:解得:a的值为非负整数 a=39、40、41、42 共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件(3)、答:生产A产品21件,B产品39件成本最低. 设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60a)+(35×+25×3+50)a=55a+10500k=55>0 W随a增大而增大当a=39时,总成本最低.考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.24、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元【解析】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据销售收入为300万元可列方程18x+12(20x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价成本列出W与y的一次函数,根据y的范围确定出W的最大值即可【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据题意得:18x+12(20x)=300,解得:x=10,则20x=2010=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据题意得:13y+8.8(20y)239,解得:y15,根据题意得:利润W=(18121)y+(1280.8)(20y)=1.8y+64,当y=15时,W最大,最大值为91万元所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.25、证明见解析【解析】四边形ABCD是平行四边形,AD/BC,AD=BC,AE=CFAD-AE=BC-CF即DE=BF四边形BFDE是平行四边形.26、 (1) ac3;(3)a=1;m或m【解析】(1)设A (p,q)则B (-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p3,a3,且C(3,-1),求得p±,根据三角形的面积公式列方程即可得到结果;由可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4)得到这些MN的解析式yx+(-1x3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到()若-1x13且x33,()若x1-1且-1x33:列方程组即可得到结论【详解】(1)设A (p,q)则B (-p,-q),把A、B坐标代入解析式可得:,3ap3+3c=3即p3,3,ac3,3,ac3;(3)c=-1,p3,a3,且C(3,-1),p±,SABC=×3×1=1,a=1;由可知:抛物线解析式为y=x3-3mx-1,M(-1,1)、N(3,4)MN:yx+(-1x3),依题,只需联立在-1x3内只有一个解即可,x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,=(3m+)3+113且c=-3,抛物线yx3(3m+)x与x轴有两个交点,且交y轴于负半轴不妨设方程x3(3m+)x3的两根分别为x1,x3(x1x3)则x1+x33m+,x1x3方程x3(3m+)x3在-1x3内只有一个解故分两种情况讨论:()若-1x13且x33:则即:,可得:m()若x1-1且-1x33:则即:,可得:m,综上所述,m或m【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键27、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.【解析】此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷根据题意可得解得答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系