江苏省无锡市江阴市南闸实验校2023年中考数学押题卷含解析.doc
-
资源ID:88305250
资源大小:474.50KB
全文页数:13页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省无锡市江阴市南闸实验校2023年中考数学押题卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示的几何体的左视图是( )ABCD2如图,已知O的半径为5,AB是O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为()A1B2C3D83若方程x23x4=0的两根分别为x1和x2,则+的值是()A1B2CD4一个多边形的每一个外角都等于72°,这个多边形是( )A正三角形B正方形C正五边形D正六边形56的倒数是()ABC6D66下列计算正确的是( )A B C D7二次函数y=ax2+bx2(a0)的图象的顶点在第三象限,且过点(1,0),设t=ab2,则t值的变化范围是()A2t0B3t0C4t2D4t08下列计算正确的是()Aa+a=2aBb3b3=2b3Ca3÷a=a3D(a5)2=a79若代数式在实数范围内有意义,则x的取值范围是( )ABCD10一元二次方程x2+x2=0的根的情况是()A有两个不相等的实数根B有两个相等的实数根C只有一个实数根D没有实数根二、填空题(共7小题,每小题3分,满分21分)11如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米12如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_13已知关于x的方程x22x+n=1没有实数根,那么|2n|1n|的化简结果是_14若将抛物线y=4(x+2)23图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐标是_15如图,已知,第一象限内的点A在反比例函数y的图象上,第四象限内的点B在反比例函数y的图象上且OAOB,OAB60°,则k的值为_16如图,已知O是ABD的外接圆,AB是O的直径,CD是O的弦,ABD=58°,则BCD的度数是_17关于x的一元二次方程x22x+m10有两个实数根,则m的取值范围是_三、解答题(共7小题,满分69分)18(10分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后, 能被x0+3整除,能被x0+n1整除,则称这个n位数是x0的一个“轮换数”例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数19(5分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得ACF=45°,再向前走300米到点D处,测得BDF=60°若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)20(8分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由21(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同(1)求购买一个A种品牌、一个B种品牌的足球各需多少元(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?22(10分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m当起重臂 AC 长度为 8 m,张角HAC 为 118°时,求操作平台 C 离地面的高度(果保留小数点后一位,参考数据:sin28°0.47,cos28°0.88,tan28°0.53)23(12分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?24(14分)解方程:2(x-3)=3x(x-3)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】本题考查的是三视图左视图可以看到图形的排和每排上最多有几层所以选择A2、B【解析】连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可【详解】解:由题意得,当点P为劣弧AB的中点时,PQ最小,连接OP、OA,由垂径定理得,点Q在OP上,AQ=AB=4,在RtAOB中,OQ=3,PQ=OP-OQ=2,故选:B【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键3、C【解析】试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1x2=4代入,即可求出=故选C考点:根与系数的关系4、C【解析】任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数【详解】360°÷72°=1,则多边形的边数是1故选C【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容5、A【解析】解:6的倒数是故选A6、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D7、D【解析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围【详解】解:二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)该函数是开口向上的,a>0y=ax2+bx2过点(1,0),a+b-2=0.a>0,2-b>0.顶点在第三象限,-<0.b>0.2-a>0.0<b<2.0<a<2.t=a-b-2.4t0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.8、A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C. ,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.9、D【解析】试题解析:要使分式有意义,则1-x0,解得:x1故选D10、A【解析】=12-4×1×(-2)=9>0,方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当>0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当<0时,一元二次方程没有实数根. 二、填空题(共7小题,每小题3分,满分21分)11、【解析】先利用ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2r=,然后解方程即可【详解】O的直径BC=,AB=BC=1,设圆锥的底面圆的半径为r,则2r=,解得r=,即圆锥的底面圆的半径为米故答案为12、【解析】如图,有5种不同取法;故概率为 .13、1【解析】根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+80,求出n2,再去绝对值符号,即可得出答案【详解】解:关于x的方程x22x+n=1没有实数根,b2-4ac=(-2)2-4×1×(n-1)=-4n+80,n2,|2n |-1-n=n-2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.14、(7,0)【解析】直接利用平移规律“左加右减,上加下减”得出平移后的解析式进而得出答案【详解】将抛物线y=-4(x+2)2-3图象向左平移5个单位,再向上平移3个单位,平移后的解析式为:y=-4(x+7)2,故得到的抛物线的顶点坐标是:(-7,0)故答案为(-7,0)【点睛】此题主要考查了二次函数与几何变换,正确掌握平移规律是解题关键15、-6【解析】如图,作ACx轴,BDx轴,OAOB,AOB=90°,OAC+AOC=90°,AOC+BOD=90°,OAC=BOD,ACOODB,OAB=60°,设A(x,),BD=OC=x,OD=AC=,B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.16、32°【解析】根据直径所对的圆周角是直角得到ADB=90°,求出A的度数,根据圆周角定理解答即可【详解】AB是O的直径, ADB=90°, ABD=58°, A=32°, BCD=32°, 故答案为32°17、m1【解析】根据一元二次方程有实数根,得出0,建立关于m的不等式,求出m的取值范围即可【详解】解:由题意知,44(m1)0,m1,故答案为:m1【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式的关系:0,方程有两个不相等的实数根;0,方程有两个相等的实数根;0,方程没有实数根是本题的关键三、解答题(共7小题,满分69分)18、 (1)见解析;(2) 201,207,1【解析】试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;(2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可试题解析:(1)设两位自然数的十位数字为x,则个位数字为2x,这个两位自然数是10x+2x=12x,这个两位自然数是12x能被6整除,依次轮换个位数字得到的两位自然数为10×2x+x=21x轮换个位数字得到的两位自然数为21x能被7整除,一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”(2)三位自然数是3的一个“轮换数”,且a=2,100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,100c+b+20能被5整除,b+20的个位数字不是0,便是5,b=0或b=5,当b=0时,100b+10c+2能被4整除,10c+2能被4整除,c只能是1,3,5,7,9;这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,这个三位自然数为201,207,当b=5时,100b+10c+2能被4整除,10c+502能被4整除,c只能是1,5,7,9;这个三位自然数可能是为251,1,257,259,而251,257,259不能被3整除,这个三位自然数为1,即这个三位自然数为201,207,1【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值19、215.6米【解析】过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,根据RtACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.【详解】解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点在RtACM中,AM=CM=200米,又CD=300米,所以米,在RtBDN中,BDF=60°,BN=200米米,米即A,B两点之间的距离约为215.6米【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.20、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析【解析】(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案【详解】解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据题意得: ,解得: 答:甲种树的单价为50元/棵,乙种树的单价为40元/棵(2)设购买甲种树a棵,则购买乙种树(200a)棵,根据题意得: 解得: a为整数,a1甲种树的单价比乙种树的单价贵,当购买1棵甲种树、133棵乙种树时,购买费用最低【点睛】一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.21、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元【解析】试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元,解得 (2) 设第二次购买A种足球m个,则购买B种足球(50m)个,解得25m27m为整数 m25、26、27(3) 第二次购买足球时,A种足球单价为50454(元),B种足球单价为80×0.972当购买B种足球越多时,费用越高 此时25×5425×723150(元)22、5.8【解析】过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可【详解】解:如图,过点作于点,过点作于点, 又, 四边形为矩形 在中, 答:操作平台离地面的高度约为【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算23、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可【详解】(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得: ,解得: .答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨.(2)解:设大货车有m辆,则小货车10-m辆,依题可得:4m+(10-m)33m010-m0解得:m10,m=8,9,10;当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m)=30m+1000,k=300,W随x的增大而增大,当m=8时,运费最少,W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案24、.【解析】先进行移项,在利用因式分解法即可求出答案.【详解】,移项得:,整理得:,或,解得:或【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.