江苏省淮安市凌桥乡初级中学2023届中考五模数学试题含解析.doc
-
资源ID:88305524
资源大小:817KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省淮安市凌桥乡初级中学2023届中考五模数学试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABC中,BC4,P与ABC的边或边的延长线相切若P半径为2,ABC的面积为5,则ABC的周长为( )A8B10C13D142若|a|=a,则a为()Aa是负数Ba是正数Ca=0D负数或零3如图是由四个相同的小正方体堆成的物体,它的正视图是()ABCD4今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A83×105B0.83×106C8.3×106D8.3×1075如图,已知菱形ABCD,B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A16B12C24D186如图,已知AB和CD是O的两条等弦OMAB,ONCD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP下列四个说法中:;OM=ON;PA=PC;BPO=DPO,正确的个数是()A1B2C3D47将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )ABCD8估计1的值在()A1和2之间B2和3之间C3和4之间D4和5之间9一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确10如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处11下列计算错误的是()Aaa=a2B2a+a=3aC(a3)2=a5Da3÷a1=a412把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D24二、填空题:(本大题共6个小题,每小题4分,共24分)13观察以下一列数:3,则第20个数是_14若反比例函数的图象与一次函数y=ax+b的图象交于点A(2,m)、B(5,n),则3a+b的值等于_152的平方根是_.16若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_17如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 18如图,等边三角形AOB的顶点A的坐标为(4,0),顶点B在反比例函数(x0)的图象上,则k= 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?20(6分)已知:如图,在矩形纸片ABCD中,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF的长为多少;求AE的长;在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由21(6分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在 一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,则哥哥去。(1)求小丽随机取出一根筷子是红色的概率;(2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。22(8分)如图,一次函数y1=x1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(2,m)(1)求反比例函数的解析式;(2)求点B到直线OM的距离23(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a0),市政府如何确定方案才能使费用最少?24(10分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:级、级、级、级将收集的数据绘制成如下两幅不完整的统计图请根据图中提供的信息,解答下列问题:()请补全上面的条形图()所抽查学生“诵读经典”时间的中位数落在_级()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?25(10分)如图,AB是O的直径,弧CDAB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E(1)如图(1)连接PC、CB,求证:BCP=PED;(2)如图(2)过点P作O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:APG=F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求O的直径AB26(12分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?27(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这次统计共抽查了_名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为_;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据三角形的面积公式以及切线长定理即可求出答案【详解】连接PE、PF、PG,AP,由题意可知:PECPFAPGA90°,SPBCBCPE×4×24,由切线长定理可知:SPFC+SPBGSPBC4,S四边形AFPGSABC+SPFC+SPBG+SPBC5+4+413,由切线长定理可知:SAPGS四边形AFPG,×AGPG,AG,由切线长定理可知:CECF,BEBG,ABC的周长为AC+AB+CE+BEAC+AB+CF+BGAF+AG2AG13,故选C【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型2、D【解析】根据绝对值的性质解答.【详解】解:当a0时,|a|=-a,|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数-a;当a是零时,a的绝对值是零3、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图4、C【解析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1| a| 10|)的记数法.【详解】830万=8300000=8.3×106.故选C【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.5、A【解析】由菱形ABCD,B=60°,易证得ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长【详解】解:四边形ABCD是菱形,AB=BCB=60°,ABC是等边三角形,AC=AB=BC=4,以AC为边长的正方形ACEF的周长为:4AC=1故选A【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用6、D【解析】如图连接OB、OD;AB=CD,=,故正确OMAB,ONCD,AM=MB,CN=ND,BM=DN,OB=OD,RtOMBRtOND,OM=ON,故正确,OP=OP,RtOPMRtOPN,PM=PN,OPB=OPD,故正确,AM=CN,PA=PC,故正确,故选D7、B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.8、B【解析】根据,可得答案.【详解】解:,1的值在2和3之间.故选B.【点睛】本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.9、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大10、D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处如图所示,故选D【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解11、C【解析】解:A、aa=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a1=a4,正确,不合题意;故选C【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂12、D【解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1)个(n1时),由此得出规律解决问题【详解】解:解:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形的个数是4×(71)24个,故选D【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、 【解析】观察已知数列得到一般性规律,写出第20个数即可【详解】解:观察数列得:第n个数为,则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键14、0【解析】分析:本题直接把点的坐标代入解析式求得之间的关系式,通过等量代换可得到的值详解:分别把A(2,m)、B(5,n),代入反比例函数的图象与一次函数y=ax+b得2m=5n,2a+b=m,5a+b=n,综合可知5(5a+b)=2(2a+b),25a+5b=4a2b,21a+7b=0,即3a+b=0.故答案为:0.点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础.15、【解析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根)【详解】解:2的平方根是故答案为【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根16、且【解析】试题解析: 一元二次方程有两个不相等的实数根,m10且=164(m1)>0,解得m<5且m1,m的取值范围为m<5且m1.故答案为:m<5且m1.点睛:一元二次方程 方程有两个不相等的实数根时: 17、4n1【解析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n1)=4n1个18、-4.【解析】过点B作BDx轴于点D,因为AOB是等边三角形,点A的坐标为(-4,0)所AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BDx轴于点D,AOB是等边三角形,点A的坐标为(4,0),AOB=60°,OB=OA=AB=4,OD= OB=2,BD=OBsin60°=4×=2,B(2,2 ),k=2×2 =4【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案【详解】解:(1)本次调查共抽取的学生有(名)选择“友善”的人数有(名)条形统计图如图所示:(2)选择“爱国”主题所对应的百分比为,选择“爱国”主题所对应的圆心角是;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题20、(1);(2)的长为;(1)存在,画出点P的位置如图1见解析,的最小值为 【解析】(1)根据勾股定理解答即可;(2)设AE=x,根据全等三角形的性质和勾股定理解答即可;(1)延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可【详解】(1)矩形ABCD,DAB=90°,AD=BC=1在RtADB中,DB故答案为5;(2)设AE=xAB=4,BE=4x,在矩形ABCD中,根据折叠的性质知:RtFDERtADE,FE=AE=x,FD=AD=BC=1,BF=BDFD=51=2在RtBEF中,根据勾股定理,得FE2+BF2=BE2,即x2+4=(4x)2,解得:x,AE的长为;(1)存在,如图1,延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:PC=PG,PF+PC=GF过点F作FHBC,交BC于点H,则有FHDC,BFHBDC,即,GH=BG+BH在RtGFH中,根据勾股定理,得:GF,即PF+PC的最小值为【点睛】本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想21、(1);(2).【解析】(1)直接利用概率公式计算;(2)画树状图展示所有36种等可能的结果数,再找出两人取出的筷子颜色相同的结果数,然后根据概率公式求解【详解】(1)小丽随机取出一根筷子是红色的概率=;(2)画树状图为:共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为12,所以小丽随爸爸去看新春灯会的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率22、(1)(2)【解析】(1)根据一次函数解析式求出M点的坐标,再把M点的坐标代入反比例函数解析式即可;(2)设点B到直线OM的距离为h,过M点作MCy轴,垂足为C,根据一次函数解析式表示出B点坐标,利用OMB的面积=×BO×MC算出面积,利用勾股定理算出MO的长,再次利用三角形的面积公式可得OMh,根据前面算的三角形面积可算出h的值【详解】解:(1)一次函数y1=x1过M(2,m),m=1M(2,1)把M(2,1)代入得:k=2反比列函数为(2)设点B到直线OM的距离为h,过M点作MCy轴,垂足为C一次函数y1=x1与y轴交于点B,点B的坐标是(0,1)在RtOMC中,点B到直线OM的距离为23、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a3时,取m=48时费用最省;当0a3时,取m=50时费用最省.【解析】试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;(3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论(1)设甲种套房每套提升费用为x万元,依题意,得解得:x=25经检验:x=25符合题意,x+3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元(2)设甲种套房提升套,那么乙种套房提升(m-48)套,依题意,得解得:48m50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升1套方案三:甲种套房提升50套,乙种套房提升30套设提升两种套房所需要的费用为W.所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:当a=3时,三种方案的费用一样,都是2240万元.当a3时,取m=48时费用W最省.当0a3时,取m=50时费用最省.考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用24、)补全的条形图见解析()级()【解析】试题分析:(1)根据级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级;(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人试题解析: (1)本次随机抽查的人数为:20÷40%=50(人)三级人数为:50-13-20-7=10.补图如下:(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有25、(1)见解析;(2)见解析;(3)AB=1【解析】(1)由垂径定理得出CPB=BCD,根据BCP=BCD+PCD=CPB+PCD=PED即可得证;(2)连接OP,知OP=OB,先证FPE=FEP得F+2FPE=180°,再由APG+FPE=90得2APG+2FPE=180°,据此可得2APG=F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF,先证PAE=F,由tanPAE=tanF得,再证GAP=MPE,由sinGAP=sinMPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由FPE=PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证PEM=ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案【详解】证明:(1)AB是O的直径且ABCD,CPB=BCD,BCP=BCD+PCD=CPB+PCD=PED,BCP=PED;(2)连接OP,则OP=OB,OPB=OBP,PF是O的切线,OPPF,则OPF=90°,FPE=90°OPE,PEF=HEB=90°OBP,FPE=FEP,AB是O的直径,APB=90°,APG+FPE=90°,2APG+2FPE=180°,F+FPE+PEF=180°,F+2FPE=180°2APG=F,APG= F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF于M,由(2)知APB=AHE=90°,AN=EN,A、H、E、P四点共圆,PAE=PHF,PH=PF,PHF=F,PAE=F,tanPAE=tanF,由(2)知APB=G=PME=90°,GAP=MPE,sinGAP=sinMPE,则,MF=GP,3PF=5PG,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知FPE=PEF,PF=EF=5k,则EM=4k,tanPEM=,tanF=,tanPAE=,PE=,AP=k,APG+EPM=EPM+PEM=90°,APG=PEM,APG+OPA=ABP+BAP=90°,且OAP=OPA,APG=ABP,PEM=ABP,则tanABP=tanPEM,即,则BP=3k,BE=k=2,则k=2,AP=3、BP=6,根据勾股定理得,AB=1【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点26、(1)w200x+8600(0x6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元【解析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6x吨,A粮仓运往C市粮食10x吨,A粮仓运往D市粮食12(10x)x+2吨,总运费w300x+500(6x)+400(10x)+800(x+2)200x+8600(0x6)(2)200x+86009000解得x2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w200x+8600k0,所以当x0时,总运费最低也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义27、(1)100,108°;(2)答案见解析;(3)600人.【解析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,此次共抽查了:20÷20%=100人.喜欢用QQ沟通所占比例为:,QQ的扇形圆心角的度数为:360°×=108°. (2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%.该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据