江苏省宜兴市宜城环科园教联盟达标名校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc
-
资源ID:88305551
资源大小:604.50KB
全文页数:15页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省宜兴市宜城环科园教联盟达标名校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明AOBAOB的依据是()ASASBSSSCAASDASA2下列图形中,不是中心对称图形的是()A平行四边形B圆C等边三角形D正六边形3已知直线与直线的交点在第一象限,则的取值范围是( )ABCD4下列计算错误的是()Aaa=a2B2a+a=3aC(a3)2=a5Da3÷a1=a45小明解方程的过程如下,他的解答过程中从第()步开始出现错误解:去分母,得1(x2)1去括号,得1x+21合并同类项,得x+31移项,得x2系数化为1,得x2ABCD6下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A1个B2个C3个D4个7下列四个图形中既是轴对称图形,又是中心对称图形的是()ABCD8下列图标中,既是轴对称图形,又是中心对称图形的是( )ABCD9计算的值为( )AB-4CD-210某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A168(1x)2108B168(1x2)108C168(12x)108D168(1+x)2108二、填空题(共7小题,每小题3分,满分21分)11桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由_个这样的正方体组成.12比较大小:_1(填“”或“”或“”)13经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是_14垫球是排球队常规训练的重要项目之一如图所示的数据是运动员张华十次垫球测试的成绩测试规则为每次连续接球10个,每垫球到位1个记1分则运动员张华测试成绩的众数是_15如图,BD是O的直径,BA是O的弦,过点A的切线交BD延长线于点C,OEAB于E,且AB=AC,若CD=2,则OE的长为_16如图,把RtABC放在直角坐标系内,其中CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将ABC沿x轴向左平移,当点C落在直线y=2x6上时,则点C沿x轴向左平移了_个单位长度17如图,网格中的四个格点组成菱形ABCD,则tanDBC的值为_ . 三、解答题(共7小题,满分69分)18(10分)如图,ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将ABC向左平移4个单位长度后得到的图形A1B1C1;(2)请画出ABC关于原点O成中心对称的图形A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标19(5分)如图,在ABC中,以AB为直径的O交BC于点D,交CA的延长线于点E,过点D作DHAC于点H,且DH是O的切线,连接DE交AB于点F(1)求证:DC=DE;(2)若AE=1,求O的半径20(8分)如图,在O的内接四边形ABCD中,BCD=120°,CA平分BCD(1)求证:ABD是等边三角形;(2)若BD=3,求O的半径21(10分)如图,在中,ABAC,点D是BC的中点,DEAB于点E,DFAC于点F. (1)EDB_(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形;写出DM与DN的数量关系并证明;用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.22(10分)二次函数y=x22mx+5m的图象经过点(1,2)(1)求二次函数图象的对称轴;(2)当4x1时,求y的取值范围23(12分)如图,矩形ABCD中,ABAD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:DAEECD24(14分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.求反比例函数和一次函数的表达式;求当时自变量的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由作法易得OD=OD,OC=OC,CD=CD,根据SSS可得到三角形全等【详解】由作法易得ODOD,OCOC,CDCD,依据SSS可判定CODC'O'D',故选:B【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理2、C【解析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.3、C【解析】根据题意画出图形,利用数形结合,即可得出答案【详解】根据题意,画出图形,如图:当时,两条直线无交点;当时,两条直线的交点在第一象限故选:C【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键4、C【解析】解:A、aa=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a1=a4,正确,不合题意;故选C【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂5、A【解析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题【详解】=1,去分母,得1-(x-2)=x,故错误,故选A【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法6、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形故选:C【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形7、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别9、C【解析】根据二次根式的运算法则即可求出答案【详解】原式=-3=-2,故选C【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型10、A【解析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1故选A【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可二、填空题(共7小题,每小题3分,满分21分)11、1【解析】主视图、左视图是分别从物体正面、左面看,所得到的图形【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体故答案为112、【解析】0.62,0.621,1;故答案为13、【解析】根据题意,画出树状图,然后根据树状图和概率公式求概率即可【详解】解:画树状图得:共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,至少有一辆汽车向左转的概率是:故答案为:【点睛】此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键14、1【解析】根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案【详解】运动员张华测试成绩的众数是1 故答案为1【点睛】本题主要考查了众数,关键是掌握众数定义15、【解析】连接OA,所以OAC90°,因为ABAC,所以BC,根据圆周角定理可知AOD2B2C,故可求出B和C的度数,在RtOAC中,求出OA的值,再在RtOAE中,求出OE的值,得到答案.【详解】连接OA,由题意可知OAC90°,ABAC,BC,根据圆周角定理可知AOD2B2C,OAC90°CAOD90°,C2C90°,故C30°B,在RtOAC中,sinC,OC2OA,OAOD,ODCD2OA,CDOA2,OBOA,OAEB30°,在RtOAE中,sinOAE,OA2OE,OEOA,故答案为.【点睛】本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.16、1【解析】先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【详解】解:在RtABC中,AB=1(1)=3,BC=5,AC=1,点C的坐标为(1,1)当y=2x6=1时,x=5,1(5)=1,点C沿x轴向左平移1个单位长度才能落在直线y=2x6上故答案为1【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.17、3【解析】试题分析:如图,连接AC与BD相交于点O,四边形ABCD是菱形,ACBD,BO=BD,CO=AC,由勾股定理得,AC=,BD=,所以,BO=,CO=,所以,tanDBC=3故答案为3考点:3菱形的性质;3解直角三角形;3网格型三、解答题(共7小题,满分69分)18、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0)【解析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2)找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A,连接BA,与x轴交点即为P【详解】(1)如图1所示,A1B1C1,即为所求:(2)如图2所示,A2B2C2,即为所求:(3)找出A的对称点A(1,1),连接BA,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0)【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键19、 (1)见解析;(2).【解析】(1)连接OD,由DHAC,DH是O的切线,然后由平行线的判定与性质可证C=ODB,由圆周角定理可得OBD=DEC,进而C=DEC,可证结论成立;(2)证明OFDAFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DHAC,由且DH是O的切线,ODH=DHA=90°,ODH=DHA=90°,ODCA,C=ODB,OD=OB,OBD=ODB,OBD=C,OBD=DEC,C=DEC,DC=DE;(2)解:由(1)可知:ODAC,ODF=AEF,OFD=AFE,OFDAFE,AE=1,OD=,O的半径为【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.20、(1)详见解析;(2).【解析】(1)因为AC平分BCD,BCD120°,根据角平分线的定义得:ACDACB60°,根据同弧所对的圆周角相等,得ACDABD,ACBADB,ABDADB60°.根据三个角是60°的三角形是等边三角形得ABD是等边三角形.(2)作直径DE,连结BE,由于ABD是等边三角形,则BAD60°,由同弧所对的圆周角相等,得BEDBAD60°.根据直径所对的圆周角是直角得,EBD90°,则EDB30°,进而得到DE2BE.设EBx,则ED2x,根据勾股定理列方程求解即可.【详解】解:(1)BCD=120°,CA平分BCD,ACD=ACB=60°,由圆周角定理得,ADB=ACB=60°,ABD=ACD=60°,ABD是等边三角形;(2)连接OB、OD,作OHBD于H,则DH=BD=,BOD=2BAD=120°,DOH=60°,在RtODH中,OD=,O的半径为【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.21、(1);(2)(2)见解析;DMDN,理由见解析;数量关系:【解析】(1)先利用等腰三角形的性质和三角形内角和得到B=C=90°,然后利用互余可得到EDB=;(2)如图,利用EDF=180°2画图;先利用等腰三角形的性质得到DA平分BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到EDF=180°2,所以MDE=NDF,然后证明MDENDF得到DM=DN;先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsin,从而有BM+CN=BCsin【详解】(1)AB=AC,B=C(180°A)=90°DEAB,DEB=90°,EDB=90°B=90°(90°)=故答案为:;(2)如图:DM=DN理由如下:AB=AC,BD=DC,DA平分BACDEAB于点E,DFAC于点F,DE=DF,MED=NFD=90°A=2,EDF=180°2MDN=180°2,MDE=NDF在MDE和NDF中,MDENDF,DM=DN;数量关系:BM+CN=BCsin证明思路为:先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,所以BM+CN=BE+EM+CFFN=2BE,接着在RtBDE可得BE=BDsin,从而有BM+CN=BCsin【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质22、(1)x=-1;(2)6y1;【解析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得【详解】(1)把点(1,2)代入y=x22mx+5m中,可得:12m+5m=2,解得:m=1,所以二次函数y=x22mx+5m的对称轴是x=,(2)y=x2+2x5=(x+1)26,当x=1时,y取得最小值6,由表可知当x=4时y=1,当x=1时y=6,当4x1时,6y1【点睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键23、见解析,【解析】要证DAE=ECD需先证ADFCEF,由折叠得BC=EC,B=AEC,由矩形得BC=AD,B=ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论【详解】证明:由折叠得:BC=EC,B=AEC,矩形ABCD,BC=AD,B=ADC=90°,EC=DA,AEC=ADC=90°,又AFD=CFE,ADFCEF (AAS)DAE=ECD【点睛】本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法24、 (1) ,;(2)或.【解析】(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可【详解】(1)把代入得.反比例函数的表达式为把和代入得,解得一次函数的表达式为.(2)由得当或时,.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点