江苏省苏州市吴中学区统考2023年中考数学最后冲刺浓缩精华卷含解析.doc
-
资源ID:88305634
资源大小:831.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省苏州市吴中学区统考2023年中考数学最后冲刺浓缩精华卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,在五边形ABCDE中,A+B+E=300°,DP,CP分别平分EDC、BCD,则P的度数是( )A60°B65°C55°D50°2如图,RtABC中,C=90°,AC=4,BC=4,两等圆A,B外切,那么图中两个扇形(即阴影部分)的面积之和为()A2B4C6D83如图,ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则C的半径为( )A2.3B2.4C2.5D2.64用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()ABCD5下列四个图形中,是中心对称图形但不是轴对称图形的是()ABCD6如图,ABC为钝角三角形,将ABC绕点A按逆时针方向旋转120°得到ABC,连接BB,若ACBB,则CAB的度数为()A45°B60°C70°D90°7化简的结果是()A B C D8如图,三棱柱ABCA1B1C1的侧棱长和底面边长均为2,且侧棱AA1底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )ABCD49如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tanBAC的值为()AB1CD10如图所示的四边形,与选项中的一个四边形相似,这个四边形是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知A(x1,y1),B(x2,y2)都在反比例函数y的图象上若x1x24,则y1y2的值为_12如图,四边形ABCD是O的内接四边形,若BOD=88°,则BCD的度数是_13如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转度得矩形ABCD,点C落在AB的延长线上,则图中阴影部分的面积是_14一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_15新定义a,b为一次函数(其中a0,且a,b为实数)的“关联数”,若“关联数”3,m+2所对应的一次函数是正比例函数,则关于x的方程的解为 16已知函数,当 时,函数值y随x的增大而增大三、解答题(共8题,共72分)17(8分)我市计划将某村的居民自来水管道进行改造该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成则该工程施工费用是多少?18(8分)如图,在平面直角坐标系中,点O为坐标原点,已知ABC三个定点坐标分别为A(4,1),B(3,3),C(1,2)画出ABC关于x轴对称的A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1( , ),B1( , ),C1( , );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出CC1C2的面积是 19(8分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点点D是直线AC上方抛物线上任意一点(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且SPCD=2SPAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AMOD,CNOD,垂足分别为M、N当AM+CN的值最大时,求点D的坐标20(8分)如图,已知点C是AOB的边OB上的一点,求作P,使它经过O、C两点,且圆心在AOB的平分线上21(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,求末端操作器节点到地面直线的距离.(结果保留根号)22(10分)吴京同学根据学习函数的经验,对一个新函数y的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 列表:x210123456y m1 5n1表中m ,n 描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:观察所画出的函数图象,写出该函数的两条性质: ; 23(12分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.(1)请写出两个“关于轴对称的二次函数”;(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).24(10分)如图,AB是O的直径,OD弦BC于点F,交O于点E,连结CE、AE、CD,若AEC=ODC(1)求证:直线CD为O的切线;(2)若AB=5,BC=4,求线段CD的长参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:根据五边形的内角和等于540°,由A+B+E=300°,可求BCD+CDE的度数,再根据角平分线的定义可得PDC与PCD的角度和,进一步求得P的度数解:五边形的内角和等于540°,A+B+E=300°,BCD+CDE=540°300°=240°,BCD、CDE的平分线在五边形内相交于点O,PDC+PCD=(BCD+CDE)=120°,P=180°120°=60°故选A考点:多边形内角与外角;三角形内角和定理2、B【解析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由A+B=90°可知阴影部分的面积等于一个圆的面积的【详解】在ABC中,依据勾股定理可知AB=8,两等圆A,B外切,两圆的半径均为4,A+B=90°,阴影部分的面积=4故选:B【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键3、B【解析】试题分析:在ABC中,AB=5,BC=3,AC=4,AC2+BC2=32+42=52=AB2,C=90°,如图:设切点为D,连接CD,AB是C的切线,CDAB,SABC=AC×BC=AB×CD,AC×BC=AB×CD,即CD=,C的半径为,故选B考点:圆的切线的性质;勾股定理4、A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A5、D【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形 故选D【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、D【解析】已知ABC绕点A按逆时针方向旋转l20°得到ABC,根据旋转的性质可得BAB=CAC=120°,AB=AB,根据等腰三角形的性质和三角形的内角和定理可得ABB=(180°-120°)=30°,再由ACBB,可得CAB=ABB=30°,所以CAB=CAC-CAB=120°-30°=90°故选D7、C【解析】试题解析:原式=故选C.考点:二次根式的乘除法8、B【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解详解:三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,等边三角形的高CD=,侧(左)视图的面积为2×,故选B点睛:本题主要考查的是由三视图判断几何体解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度9、B【解析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到ABC为等腰直角三角形,即可求出所求【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,ABC为等腰直角三角形,BAC=45°,则tanBAC=1,故选B【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键10、D【解析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可【详解】解:作AEBC于E,则四边形AECD为矩形,EC=AD=1,AE=CD=3,BE=4,由勾股定理得,AB=5,四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据反比例函数图象上点的坐标特征得到 再把它们相乘,然后把代入计算即可【详解】根据题意得所以故答案为:1.【点睛】考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.12、136°【解析】由圆周角定理得,A=BOD=44°,由圆内接四边形的性质得,BCD=180°-A=136°【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.13、【解析】在矩形ABCD中,AB=,DAC=60°,DC=,AD=1由旋转的性质可知:DC=,AD=1,tanDAC=,DAC=60°BAB=30°,SABC=×1×=,S扇形BAB=S阴影=SABC-S扇形BAB=-故答案为-【点睛】错因分析 中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出的值.14、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:共有9种等可能的结果,两次摸出的球都是红球的由4种情况,两次摸出的球都是红球的概率是,故答案为.【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.15、.【解析】试题分析:根据“关联数”3,m+2所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=,经检验x=是分式方程的解考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义16、x1【解析】试题分析:=,a=10,抛物线开口向下,对称轴为直线x=1,当x1时,y随x的增大而增大,故答案为x1考点:二次函数的性质三、解答题(共8题,共72分)17、(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可(2)先计算甲、乙合作需要的时间,然后计算费用即可【详解】解:(1)设这项工程规定的时间是x天 根据题意,得 解得x20经检验,x20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间(天)(65003500)×12120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答18、(1)1、1,3、3,1、2;(2)见解析,1.【解析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得【详解】(1)如图所示,A1B1C1即为所求A1(1,1)B1(3,3),C1(1,2)故答案为:1、1、3、3、1、2;(2)如图所示,CC1C2的面积是2×1=1故答案为:1【点睛】本题考查了作图轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质19、(1)y=x2x+3;(2)点P的坐标为(,1);(3)当AM+CN的值最大时,点D的坐标为(,)【解析】(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P作PEx轴,垂足为点E,则APEACO,由PCD、PAD有相同的高且SPCD=2SPAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;(3)连接AC交OD于点F,由点到直线垂线段最短可找出当ACOD时AM+CN取最大值,过点D作DQx轴,垂足为点Q,则DQOAOC,根据相似三角形的性质可设点D的坐标为(3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论【详解】(1)直线y=x+3与x轴、y轴分别交于A、C两点,点A的坐标为(4,0),点C的坐标为(0,3)点B在x轴上,点B的横坐标为,点B的坐标为(,0),设抛物线的函数关系式为y=ax2+bx+c(a0),将A(4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得: ,抛物线的函数关系式为y=x2x+3;(2)如图1,过点P作PEx轴,垂足为点E,PCD、PAD有相同的高,且SPCD=2SPAD,CP=2AP,PEx轴,COx轴,APEACO,AE=AO=,PE=CO=1,OE=OAAE=,点P的坐标为(,1);(3)如图2,连接AC交OD于点F,AMOD,CNOD,AFAM,CFCN,当点M、N、F重合时,AM+CN取最大值,过点D作DQx轴,垂足为点Q,则DQOAOC,设点D的坐标为(3t,4t)点D在抛物线y=x2x+3上,4t=3t2+t+3,解得:t1=(不合题意,舍去),t2=,点D的坐标为(,),故当AM+CN的值最大时,点D的坐标为(,)【点睛】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(3t,4t)20、答案见解析【解析】首先作出AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可【详解】解:如图所示:【点睛】本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键.21、()cm.【解析】作BGCD,垂足为G,BHAF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BGCD,垂足为G,BHAF,垂足为H,在中,BCD=60°,BC=60cm,在中,BAF=45°,AB=60cm,D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.22、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x2对称【解析】(1)分式的分母不等于零;(2)把自变量的值代入即可求解;(3)根据题意描点、连线即可;(4)观察图象即可得出该函数的其他性质【详解】(1)由y知,x24x+50,所以变量x的取值范围是一切实数故答案为:一切实数;(2)m,n,故答案为:-,-;(3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:该函数有最小值没有最大值;该函数图象关于直线x2对称故答案为:该函数有最小值没有最大值;该函数图象关于直线x2对称【点睛】本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键23、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为【解析】(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;(2)根据函数的特点得出a=m,-=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标【详解】解:(1)答案不唯一,如;(2)y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,即a=m,-=0,整理得m=a,n=-b,p=c,则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,函数y1+y2的顶点坐标为(0,2c)【点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键24、(1)证明见试题解析;(2)【解析】试题分析:(1)利用圆周角定理结合等腰三角形的性质得出OCF+DCB=90°,即可得出答案;(2)利用圆周角定理得出ACB=90°,利用相似三角形的判定与性质得出DC的长试题解析:(1)连接OC,CEA=CBA,AEC=ODC,CBA=ODC,又CFD=BFO,DCB=BOF,CO=BO,OCF=B,B+BOF=90°,OCF+DCB=90°,直线CD为O的切线;(2)连接AC,AB是O的直径,ACB=90°,DCO=ACB,又D=B,OCDACB,ACB=90°,AB=5,BC=4,AC=3,即,解得;DC=考点:切线的判定