江苏省淮安市凌桥乡初级中学2022-2023学年中考二模数学试题含解析.doc
-
资源ID:88305705
资源大小:876KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省淮安市凌桥乡初级中学2022-2023学年中考二模数学试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列命题中,真命题是( )A对角线互相垂直且相等的四边形是正方形B等腰梯形既是轴对称图形又是中心对称图形C圆的切线垂直于经过切点的半径D垂直于同一直线的两条直线互相垂直2的倒数是()AB2C2D3如图,ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若A=60°,B=100°,BC=4,则扇形BDE的面积为何?()ABCD4若a与5互为倒数,则a=( )AB5C-5D5如图是二次函数yax2bxc的图象,其对称轴为x1,下列结论:abc0;2ab0;4a2bc0;若(,y1),(,y2)是抛物线上两点,则y1y2,其中结论正确的是( )ABCD6若关于的方程的两根互为倒数,则的值为()AB1C1D07在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和1,则点C所对应的实数是( )A1+B2+C21D2+18如图,点A、B、C、D在O上,AOC120°,点B是弧AC的中点,则D的度数是()A60°B35°C30.5°D30°9下列分式是最简分式的是( )ABCD10如图,直线ykx+b与ymx+n分别交x轴于点A(1,0),B(4,0),则函数y(kx+b)(mx+n)中,则不等式的解集为()Ax2B0x4C1x4Dx1 或 x411学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表: 得分(分) 60 70 80 90 100 人数(人) 7 12 10 8 3则得分的众数和中位数分别为()A70分,70分B80分,80分C70分,80分D80分,70分12将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13一个圆锥的三视图如图,则此圆锥的表面积为_14在RtABC中,C90°,AB6,cosB,则BC的长为_15我们知道方程组的解是,现给出另一个方程组,它的解是_16抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为_17如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为_18如图所示,ABC的顶点是正方形网格的格点,则sinA的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到 米)(参考数据:,)20(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?21(6分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?22(8分)解不等式:123(8分)如图,在RtABC中,B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使BCM=2A判断直线MN与O的位置关系,并说明理由;若OA=4,BCM=60°,求图中阴影部分的面积24(10分)在矩形ABCD中,AB6,AD8,点E是边AD上一点,EMEC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项如图1,求证:ANEDCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长25(10分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度(结果精确到0.1米,参考数据:sin33°0.54,cos33°0.84,tan33°0.65)26(12分)如图,矩形ABCD中,ABAD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:DAEECD27(12分)如图所示,一艘轮船位于灯塔P的北偏东方向与灯塔的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东方向上的B处.求此时轮船所在的B处与灯塔的距离.(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行故选C2、B【解析】根据乘积是1的两个数叫做互为倒数解答【详解】解:×11的倒数是1故选B【点睛】本题考查了倒数的定义,是基础题,熟记概念是解题的关键3、C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:A=60°,B=100°,C=180°60°100°=20°,DE=DC,C=DEC=20°,BDE=C+DEC=40°,S扇形DBE=故选C点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=4、A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案详解:根据题意可得:5a=1,解得:a=, 故选A点睛:本题主要考查的是倒数的定义,属于基础题型理解倒数的定义是解题的关键5、C【解析】试题分析:根据题意可得:a0,b0,c0,则abc0,则错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则正确.点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.6、C【解析】根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值【详解】解:设、是的两根,由题意得:,由根与系数的关系得:,k2=1,解得k=1或1,方程有两个实数根,则,当k=1时,k=1不合题意,故舍去,当k=1时,符合题意,k=1, 故答案为:1【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键7、D【解析】设点C所对应的实数是x根据中心对称的性质,对称点到对称中心的距离相等,则有,解得.故选D.8、D【解析】根据圆心角、弧、弦的关系定理得到AOB= AOC,再根据圆周角定理即可解答.【详解】连接OB,点B是弧的中点,AOB AOC60°,由圆周角定理得,D AOB30°,故选D【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.9、C【解析】解:A,故本选项错误;B,故本选项错误;C,不能约分,故本选项正确;D,故本选项错误故选C点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键10、C【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可【详解】直线y1kx+b与直线y2mx+n分别交x轴于点A(1,0),B(4,0),不等式(kx+b)(mx+n)0的解集为1x4,故选C【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变11、C【解析】解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分故选C【点睛】本题考查数据分析12、C【解析】试题分析:抛物线向右平移1个单位长度,平移后解析式为:,再向上平移1个单位长度所得的抛物线解析式为:故选C考点:二次函数图象与几何变换二、填空题:(本大题共6个小题,每小题4分,共24分)13、55cm2【解析】由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.【详解】由三视图可知,半径为5cm,圆锥母线长为6cm,表面积=×5×6+×52=55cm2,故答案为: 55cm2.【点睛】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=rl+r2.14、4【解析】根据锐角的余弦值等于邻边比对边列式求解即可.【详解】C=90°,AB=6,BC=4.【点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在RtABC中, , ,.15、【解析】观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.16、【解析】根据概率的计算方法求解即可.【详解】第4次抛掷一枚均匀的硬币时,正面和反面朝上的概率相等,第4次正面朝上的概率为.故答案为:.【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=17、【解析】延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值【详解】延长GF与CD交于点D,过点E作交DF于点M, 设正方形的边长为,则, 故答案为:【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.18、【解析】解:连接CE,根据图形可知DC=1,AD=3,AC=,BE=CE=,EBC=ECB=45°,CEAB,sinA=,故答案为考点:勾股定理;三角形的面积;锐角三角函数的定义三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、6.58米【解析】试题分析:过A点作AECD于E在RtABE中,根据三角函数可得AE,BE,在RtADE中,根据三角函数可得DE,再根据DB=DEBE即可求解试题解析:过A点作AECD于E 在RtABE中,ABE=62° AE=ABsin62°=25×0.88=22米,BE=ABcos62°=25×0.47=11.75米, 在RtADE中,ADB=50°, DE=18米,DB=DEBE6.58米 故此时应将坝底向外拓宽大约6.58米考点:解直角三角形的应用-坡度坡角问题20、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到300.1(x10)=16,解方程即可求解;(3)由于根据(1)得到x1,又一次销售x(x10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=,然后可以得到函数的增减性,再结合已知条件即可解决问题试题解析:(1)设一次购买x只,则300.1(x10)=16,解得:x=1答:一次至少买1只,才能以最低价购买;(3)当10x1时,y=300.1(x10)13x=,当x1时,y=(1613)x=4x;综上所述:;(3)y=,当10x45时,y随x的增大而增大,即当卖的只数越多时,利润更大当45x1时,y随x的增大而减小,即当卖的只数越多时,利润变小且当x=46时,y1=303.4,当x=1时,y3=3y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象当x=45时,最低售价为300.1(4510)=16.5(元),此时利润最大故店家一次应卖45只,最低售价为16.5元,此时利润最大考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论21、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解22、x【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得【详解】2(23x)3(x1)6,46x3x+36,6x3x643,9x1,x【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变23、(1)相切;(2)【解析】试题分析:(1)MN是O切线,只要证明OCM=90°即可(2)求出AOC以及BC,根据S阴=S扇形OACSOAC计算即可试题解析:(1)MN是O切线理由:连接OCOA=OC,OAC=OCA,BOC=A+OCA=2A,BCM=2A,BCM=BOC,B=90°,BOC+BCO=90°,BCM+BCO=90°,OCMN,MN是O切线(2)由(1)可知BOC=BCM=60°,AOC=120°,在RTBCO中,OC=OA=4,BCO=30°,BO=OC=2,BC=2S阴=S扇形OACSOAC=考点:直线与圆的位置关系;扇形面积的计算24、(1)见解析;(2);(1)DE的长分别为或1【解析】(1)由比例中项知,据此可证AMEAEN得AEMANE,再证AEMDCE可得答案;(2)先证ANEEAC,结合ANEDCE得DCEEAC,从而知,据此求得AE8,由(1)得AEMDCE,据此知,求得AM,由求得MN;(1)分ENMEAC和ENMECA两种情况分别求解可得【详解】解:(1)AE是AM和AN的比例中项,AA,AMEAEN, AEMANE,D90°,DCEDEC90°,EMBC,AEMDEC90°,AEMDCE,ANEDCE;(2)AC与NE互相垂直,EACAEN90°,BAC90°,ANEAEN90°,ANEEAC,由(1)得ANEDCE,DCEEAC,tanDCEtanDAC,DCAB6,AD8,DE,AE8,由(1)得AEMDCE,tanAEMtanDCE,AM,AN,MN;(1)NMEMAEAEM,AECDDCE,又MAED90°,由(1)得AEMDCE,AECNME,当AEC与以点E、M、N为顶点所组成的三角形相似时ENMEAC,如图2, ANEEAC,由(2)得:DE;ENMECA,如图1,过点E作EHAC,垂足为点H,由(1)得ANEDCE,ECADCE,HEDE,又tanHAE,设DE1x,则HE1x,AH4x,AE5x,又AEDEAD,5x1x8,解得x1,DE1x1,综上所述,DE的长分别为或1【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点25、29.8米【解析】作,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度【详解】解:如图,作,由题意得:米,米,则米,答:这架无人飞机的飞行高度为米【点睛】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键26、见解析,【解析】要证DAE=ECD需先证ADFCEF,由折叠得BC=EC,B=AEC,由矩形得BC=AD,B=ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论【详解】证明:由折叠得:BC=EC,B=AEC,矩形ABCD,BC=AD,B=ADC=90°,EC=DA,AEC=ADC=90°,又AFD=CFE,ADFCEF (AAS)DAE=ECD【点睛】本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法27、海里【解析】过点P作,则在RtAPC中易得PC的长,再在直角BPC中求出PB【详解】解:如图,过点P作,垂足为点C.,海里.在中,(海里)在中,(海里).此时轮船所在的B处与灯塔P的距离是海里【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线