江苏省扬中等七校2022-2023学年高三3月份模拟考试数学试题含解析.doc
2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数在上有两个零点,则的取值范围是( )ABCD2已知集合Ay|y,Bx|ylg(x2x2),则R(AB)( )A0,)B(,0),+)C(0,)D(,0,+)3下列结论中正确的个数是( )已知函数是一次函数,若数列通项公式为,则该数列是等差数列;若直线上有两个不同的点到平面的距离相等,则;在中,“”是“”的必要不充分条件;若,则的最大值为2.A1B2C3D04已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( )ABCD5已知方程表示的曲线为的图象,对于函数有如下结论:在上单调递减;函数至少存在一个零点;的最大值为;若函数和图象关于原点对称,则由方程所确定;则正确命题序号为( )ABCD6已知函数,若方程恰有两个不同实根,则正数m的取值范围为( )ABCD7某几何体的三视图如图所示,则该几何体的体积是( )ABCD8已知函数满足,设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9在平行四边形中,若则( )ABCD10九章算术“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图: 记为每个序列中最后一列数之和,则为( )A147B294C882D176411下列函数中,在区间上为减函数的是( )ABCD12下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则( )ABC1D二、填空题:本题共4小题,每小题5分,共20分。13设实数,满足,则的最大值是_.14在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_15已知复数(为虚数单位)为纯虚数,则实数的值为_16设O为坐标原点, ,若点B(x,y)满足,则的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设数列,其前项和,又单调递增的等比数列, , .()求数列,的通项公式;()若 ,求数列的前n项和,并求证:.18(12分)已知函数f(x)xlnx,g(x)x2ax.(1)求函数f(x)在区间t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1),B(x2,h(x2)(x1x2)是函数h(x)图像上任意两点,且满足1,求实数a的取值范围;(3)若x(0,1,使f(x)成立,求实数a的最大值19(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.20(12分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐飞机乘坐高铁乘坐飞机乘坐高铁乘坐飞机10分(满意)1212022015分(一般)2362490分(不满意)106344(1)在样本中任取个,求这个出行人恰好不是青年人的概率;(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.21(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)22(10分)设函数,其中是自然对数的底数.()若在上存在两个极值点,求的取值范围;()若,函数与函数的图象交于,且线段的中点为,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】 ,.当时,在上单调递增,不合题意.当时,在上单调递减,也不合题意.当时,则时,在上单调递减,时,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题2、D【解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合Ay|yy|y00,+);Bx|ylg(x2x2)x|x2x20x|0x(0,),AB(0,),R(AB)(,0,+).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.3、B【解析】根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:已知函数是一次函数,若数列的通项公式为,可得为一次项系数),则该数列是等差数列,故正确;若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故错误;在中,而余弦函数在区间上单调递减,故 “”可得“”,由“”可得“”,故“”是“”的充要条件,故错误;若,则,所以,当且仅当时取等号,故正确;综上可得正确的有共2个;故选:B【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题4、C【解析】先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.5、C【解析】分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,此时不存在图象;(2)当时,此时为实轴为轴的双曲线一部分;(3)当时,此时为实轴为轴的双曲线一部分;(4)当时,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于,在上单调递减,所以正确;对于,函数与的图象没有交点,即没有零点,所以错误;对于,由函数图象的对称性可知错误;对于,函数和图象关于原点对称,则中用代替,用代替,可得,所以正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.6、D【解析】当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,根据图像得到答案.【详解】当时,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,故,.根据图像知:.故选:.【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.7、A【解析】观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。8、B【解析】结合函数的对应性,利用充分条件和必要条件的定义进行判断即可【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题9、C【解析】由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示, 平行四边形中, , ,, 因为, 所以, ,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:()平行四边形法则(平行四边形的对角线分别是两向量的和与差);()三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).10、A【解析】根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.11、C【解析】利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.12、D【解析】根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据目标函数的解析式形式,分析目标函数的几何意义,然后判断求出目标函数取得最优解的点的坐标,即可求解【详解】作出实数,满足表示的平面区域,如图所示:由可得,则表示直线在轴上的截距,截距越小,越大.由可得,此时最大为1,故答案为:1【点睛】本题主要考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想14、【解析】先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.【详解】取的外心为,设为球心,连接,则平面,取的中点,连接,过做于点,易知四边形为矩形,连接,设,.连接,则,三点共线,易知,所以,.在和中,即,所以,得.所以.【点睛】本题主要考查几何体的外接球问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.15、【解析】利用复数的乘法求解再根据纯虚数的定义求解即可.【详解】解:复数为纯虚数,解得故答案为:【点睛】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题.16、【解析】 ,可行域如图,直线 与圆 相切时取最大值,由 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)详见解析.【解析】(1)当时,当时,当时,也满足,等比数列,又,或(舍去),;(2)由(1)可得:,显然数列是递增数列,即.)18、(1)m(t)(2)a22.(3)a22.【解析】(1)是研究在动区间上的最值问题,这类问题的研究方法就是通过讨论函数的极值点与所研究的区间的大小关系来进行求解(2)注意到函数h(x)的图像上任意不同两点A,B连线的斜率总大于1,等价于h(x1)h(x2)x1x2(x1x2)恒成立,从而构造函数F(x)h(x)x在(0,)上单调递增,进而等价于F(x)0在(0,)上恒成立来加以研究(3)用处理恒成立问题来处理有解问题,先分离变量转化为求对应函数的最值,得到a,再利用导数求函数M(x)的最大值,这要用到二次求导,才可确定函数单调性,进而确定函数最值【详解】(1) f(x)1,x0,令f(x)0,则x1.当t1时,f(x)在t,t1上单调递增,f(x)的最小值为f(t)tlnt;当0t1时,f(x)在区间(t,1)上为减函数,在区间(1,t1)上为增函数,f(x)的最小值为f(1)1.综上,m(t)(2)h(x)x2(a1)xlnx,不妨取0x1x2,则x1x20,则由,可得h(x1)h(x2)x1x2,变形得h(x1)x1h(x2)x2恒成立令F(x)h(x)xx2(a2)xlnx,x0,则F(x)x2(a2)xlnx在(0,)上单调递增,故F(x)2x(a2)0在(0,)上恒成立,所以2xa2在(0,)上恒成立因为2x2,当且仅当x时取“”,所以a22.(3)因为f(x),所以a(x1)2x2xlnx.因为x(0,1,则x1(1,2,所以x(0,1,使得a成立令M(x),则M(x).令y2x23xlnx1,则由y0 可得x或x1(舍)当x时,y0,则函数y2x23xlnx1在上单调递减;当x时,y0,则函数y2x23xlnx1在上单调递增所以yln40,所以M(x)0在x(0,1时恒成立,所以M(x)在(0,1上单调递增所以只需aM(1),即a1.所以实数a的最大值为1.【点睛】本题考查了函数与导数综合问题,考查了学生综合分析,转化与划归,数学运算能力,属于难题.19、(1)28种;(2)分布见解析,.【解析】(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3. ,.故X的概率分布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.20、(1)(2)分布列见解析,数学期望(3)建议甲乘坐高铁从市到市.见解析【解析】(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为,即可按照古典概型的概率计算公式计算得出;(2)依题意可知服从二项分布,先计算出随机选取人次,此人为老年人概率是,所以,即,即可求出的分布列和数学期望;(3)可以计算满意度均值来比较乘坐高铁还是飞机【详解】(1)设事件:“在样本中任取个,这个出行人恰好不是青年人”为, 由表可得:样本中出行的老年人、中年人、青年人人次分别为,所以在样本中任取个,这个出行人恰好不是青年人的概率(2)由题意,的所有可能取值为: 因为在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,此人为老年人概率是,所以, ,所以随机变量的分布列为: 故 (3)答案不唯一,言之有理即可 如可以从满意度的均值来分析问题,参考答案如下:由表可知,乘坐高铁的人满意度均值为:乘坐飞机的人满意度均值为:因为, 所以建议甲乘坐高铁从市到市【点睛】本题主要考查了分层抽样的应用、古典概型的概率计算、以及离散型随机变量的分布列和期望的计算,解题关键是对题意的理解,概率类型的判断,属于中档题21、(1)证明见解析;(2).【解析】(1)将代入函数解析式可得,构造函数,求得并令,由导函数符号判断函数单调性并求得最大值,由即可证明恒成立,即不等式得证.(2)对函数求导,变形后讨论当时的函数单调情况:当时,可知满足题意;将不等式化简后构造函数,利用导函数求得极值点与函数的单调性,从而求得最小值为,分别依次代入检验的符号,即可确定整数的最大值;当时不满足题意,因为求整数的最大值,所以时无需再讨论.【详解】(1)证明:当时代入可得,令,则,令解得,当时,所以在单调递增,当时,所以在单调递减,所以,则,即成立.(2)函数则,若时,当时,则在时单调递减,所以,即当时成立;所以此时需满足的整数解即可,将不等式化简可得,令 则令解得,当时,即在内单调递减,当时,即在内单调递增,所以当时取得最小值,则,所以此时满足的整数 的最大值为;当时,在时,此时,与题意矛盾,所以不成立.因为求整数的最大值,所以时无需再讨论,综上所述,当时,整数的最大值为.【点睛】本题考查了导数在证明不等式中的应用,导数与函数单调性、极值、最值的关系和应用,构造函数法求最值,并判断函数值法符号,综合性强,属于难题.22、();()详见解析.【解析】()依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;()由题解得,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明,即可;【详解】解:()由题意可知,在上存在两个极值点,等价于在有两个不等实根,由可得,令,则,令,可得,当时,所以在上单调递减,且当时,单调递增;当时,单调递减;所以是的极大值也是最大值,又当,当大于0趋向与0,要使在有两个根,则,所以的取值范围为;()由题解得,要证成立,只需证:即:,只需证:设,即证:要证,只需证:令,则在上为增函数,即成立;要证,只需证明:令,则在上为减函数,即成立成立,所以成立.【点睛】本题考查利用导数研究函数的单调性、极值,利用导数证明不等式,属于难题;