江苏省滨海县2023届高三冲刺模拟数学试卷含解析.doc
-
资源ID:88305771
资源大小:2.01MB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省滨海县2023届高三冲刺模拟数学试卷含解析.doc
2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在边长为的菱形中,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为( )ABCD2一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( )ABCD3已知函数,若,则的取值范围是( )ABCD4设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为若,则的离心率为( )ABCD5在中,分别为所对的边,若函数有极值点,则的范围是( )ABCD6 下列与的终边相同的角的表达式中正确的是()A2k45°(kZ)Bk·360°(kZ)Ck·360°315°(kZ)Dk (kZ)7已知的部分图象如图所示,则的表达式是( )ABCD8设,且,则( )ABCD9如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )ABCD10是虚数单位,则( )A1B2CD11如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )ABCD12已知的展开式中的常数项为8,则实数( )A2B-2C-3D3二、填空题:本题共4小题,每小题5分,共20分。13在中,内角所对的边分别是.若,则_,面积的最大值为_.14已知函数图象上一点处的切线方程为,则_15已知直角坐标系中起点为坐标原点的向量满足,且,存在,对于任意的实数,不等式,则实数的取值范围是_.16如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、以及、一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为_参考数据:;)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若函数,求的极值;(2)证明:. (参考数据: )18(12分)已知的内角,的对边分别为,且.(1)求;(2)若的面积为,求的周长.19(12分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围20(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;平均车速超过的人数平均车速不超过的人数合计男性驾驶员女性驾驶员合计(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.参考公式:其中临界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82821(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,求四边形面积的最大值.22(10分)已知,分别为内角,的对边,且.(1)证明:;(2)若的面积,求角.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,;法二:,;法三:作出的外接圆直径,则,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.2、A【解析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,四面体所有棱长都是4,正方体的棱长为,设球的半径为,则,解得,所以,故选:A【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题3、B【解析】对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.4、B【解析】设过点作的垂线,其方程为,联立方程,求得,即,由,列出相应方程,求出离心率.【详解】解:不妨设过点作的垂线,其方程为,由解得,即,由,所以有,化简得,所以离心率故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题5、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.6、C【解析】利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2k (kZ),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.7、D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.8、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】 即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.9、C【解析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.10、C【解析】由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.11、B【解析】根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题12、A【解析】先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1 【解析】由正弦定理,结合,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1). 1 (2). 【点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.14、1【解析】求出导函数,由切线方程得切线斜率和切点坐标,从而可求得【详解】由题意,函数图象在点处的切线方程为,解得,故答案为:1【点睛】本题考查导数的几何意义,求出导函数是解题基础,15、【解析】由题意可设,由向量的坐标运算,以及恒成立思想可设,的最小值即为点,到直线的距离,求得,可得不大于【详解】解:,且,可设,可得,可得的终点均在直线上,由于为任意实数,可得时,的最小值即为点到直线的距离,可得,对于任意的实数,不等式,可得,故答案为:【点睛】本题主要考查向量的模的求法,以及两点的距离的运用,考查直线方程的运用,以及点到直线的距离,考查运算能力,属于中档题16、【解析】根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【点睛】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(1)见证明【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证exx1xlnx10,根据xlnxx(x1),问题转化为只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),根据函数的单调性证明即可【详解】(1),当,当,在上递增,在上递减,在取得极大值,极大值为,无极大值.(1)要证f(x)+1exx1即证exx1xlnx10,先证明lnxx1,取h(x)lnxx+1,则h(x),易知h(x)在(0,1)递增,在(1,+)递减,故h(x)h(1)0,即lnxx1,当且仅当x1时取“”,故xlnxx(x1),exx1xlnxex1x1+x1,故只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),则k(x)ex4x+1,令F(x)k(x),则F(x)ex4,令F(x)0,解得:x1ln1,F(x)递增,故x(0,1ln1时,F(x)0,F(x)递减,即k(x)递减,x(1ln1,+)时,F(x)0,F(x)递增,即k(x)递增,且k(1ln1)58ln10,k(0)10,k(1)e18+10,由零点存在定理,可知x1(0,1ln1),x1(1ln1,1),使得k(x1)k(x1)0,故0xx1或xx1时,k(x)0,k(x)递增,当x1xx1时,k(x)0,k(x)递减,故k(x)的最小值是k(0)0或k(x1),由k(x1)0,得4x11,k(x1)1+x11(x11)(1x11),x1(1ln1,1),k(x1)0,故x0时,k(x)0,原不等式成立【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题18、(1);(2).【解析】(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.19、 (1) (2) 【解析】(1)分类讨论,去掉绝对值,化为与之等价的三个不等式组,求得每个不等式组的解集,再取并集即可(2)要使函数的定义域为R,只要的最小值大于0即可,根据绝对值不等式的性质求得最小值即可得到答案【详解】(1)不等式或或,解得或,即x>0,所以原不等式的解集为(2)要使函数的定义域为R,只要的最小值大于0即可,又,当且仅当时取等,只需最小值,即所以实数a的取值范围是【点睛】本题考查绝对值不等式的解法,考查利用绝对值三角不等式求最值,属基础题20、(1)填表见解析;有的把握认为,平均车速超过与性别有关(2)详见解析【解析】(1)根据题目所给数据填写列联表,计算出的值,由此判断出有的把握认为,平均车速超过与性别有关.(2)利用二项分布的知识计算出分布列和数学期望.【详解】(1)平均车速超过的人数平均车速不超过的人数合计男性驾驶员301040女性驾驶员51520合计352560因为,所以有的把握认为,平均车速超过与性别有关.(2)服从,即,.所以的分布列如下0123的期望【点睛】本小题主要考查列联表独立性检验,考查二项分布分布列和数学期望,属于中档题.21、(1)(2)【解析】(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得: 在中,则,即,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题22、(1)见解析;(2)【解析】(1)利用余弦定理化简已知条件,由此证得(2)利用正弦定理化简(1)的结论,得到,利用三角形的面积公式列方程,由此求得,进而求得的值,从而求得角.【详解】(1)由已知得,由余弦定理得,.(2)由(1)及正弦定理得,即,.,.【点睛】本小题主要考查余弦定理、正弦定理解三角形,考查三角形的面积公式,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.