江苏省苏州市长桥中学2023年中考数学模拟试题含解析.doc
-
资源ID:88305795
资源大小:632KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省苏州市长桥中学2023年中考数学模拟试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,已知矩形ABCD中,BC2AB,点E在BC边上,连接DE、AE,若EA平分BED,则的值为()ABCD2下列计算结果等于0的是( )ABCD3如图,能判定EBAC的条件是( )AC=ABEBA=EBDCA=ABEDC=ABC4某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A(7+x)(5+x)×3=7×5B(7+x)(5+x)=3×7×5C(7+2x)(5+2x)×3=7×5D(7+2x)(5+2x)=3×7×55如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过( )A点MB点NC点PD点Q6如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()ABCD7如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A黑(3,3),白(3,1)B黑(3,1),白(3,3)C黑(1,5),白(5,5)D黑(3,2),白(3,3)8如图,在矩形ABCD中,E是AD上一点,沿CE折叠CDE,点D恰好落在AC的中点F处,若CD,则ACE的面积为()A1BC2D29二次函数yax2bxc(a0)的图象如图,下列结论正确的是() Aa<0Bb24ac<0C当1<x<3时,y>0D=110如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动设运动时间为t秒,APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是( )A B C D12已知 a、b 是方程 x22x10 的两个根,则 a2a+b 的值是_13在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示则当乙车到达A地时,甲车已在C地休息了_小时14我们知道,四边形具有不稳定性如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_15在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_16已知:如图,ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_三、解答题(共8题,共72分)17(8分)如图,抛物线yax2+bx2经过点A(4,0),B(1,0)(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求DCA面积的最大值;(3)P是抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由18(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长19(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程20(8分)先化简,再求值:,其中x为方程的根21(8分)如图,ABC中,CD是边AB上的高,且求证:ACDCBD;求ACB的大小22(10分)如图,在ABC中,AB=AC,点,在边上,求证:23(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由若AD=2,AC=,求O的半径参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】过点A作AFDE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可【详解】解:如图,过点A作AFDE于F,在矩形ABCD中,ABCD,AE平分BED,AFAB,BC2AB,BC2AF,ADF30°,在AFD与DCE中C=AFD=90°,ADF=DEC,AF=DC,,AFDDCE(AAS),CDE的面积AFD的面积矩形ABCD的面积ABBC2AB2,2ABE的面积矩形ABCD的面积2CDE的面积(2)AB2,ABE的面积,,故选:C【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB2、A【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=0,符合题意;B、原式=-1+(-1)=-2,不符合题意;C、原式=-1,不符合题意;D、原式=-1,不符合题意,故选:A【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键3、C【解析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线【详解】A、C=ABE不能判断出EBAC,故本选项错误; B、A=EBD不能判断出EBAC,故本选项错误;C、A=ABE,根据内错角相等,两直线平行,可以得出EBAC,故本选项正确; D、C=ABC只能判断出AB=AC,不能判断出EBAC,故本选项错误故选C【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行4、D【解析】试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x 矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题5、C【解析】根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5OA=OM=ON=OQOP则点A不经过点P故选C.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.6、D【解析】如图,连接AB,由圆周角定理,得C=ABO,在RtABO中,OA=3,OB=4,由勾股定理,得AB=5,故选D7、A【解析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误故选:A【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键8、B【解析】由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求ACE的面积【详解】解:点F是AC的中点,AF=CF=AC,将CDE沿CE折叠到CFE,CD=CF=,DE=EF,AC=,在RtACD中,AD=1SADC=SAEC+SCDE,×AD×CD=×AC×EF+×CD×DE1×=EF+DE,DE=EF=1,SAEC=××1=故选B【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键9、D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:抛物线开口向上,A选项错误,抛物线与x轴有两个交点, B选项错误,由图象可知,当1<x<3时,y<0C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(1,0)和(3,0)可知对称轴为 即1,D选项正确,故选D.10、B【解析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.二、填空题(本大题共6个小题,每小题3分,共18分)11、C.【解析】分析:根据动点P在OC上运动时,APB逐渐减小,当P在上运动时,APB不变,当P在DO上运动时,APB逐渐增大,即可得出答案解答:解:当动点P在OC上运动时,APB逐渐减小;当P在上运动时,APB不变;当P在DO上运动时,APB逐渐增大故选C12、1【解析】根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论【详解】a、b是方程x2-2x-1=0的两个根,a2-2a=1,a+b=2,a2-a+b=a2-2a+(a+b)=1+2=1故答案为1【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键13、2.1【解析】根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题【详解】由题意可得,甲车到达C地用时4个小时,乙车的速度为:200÷(3.11)=80km/h,乙车到达A地用时为:(200+240)÷80+1=6.1(小时),当乙车到达A地时,甲车已在C地休息了:6.14=2.1(小时),故答案为:2.1【点睛】本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答14、(2,)【解析】过C作CH于H,由题意得2AO=AD,所以DAO=60°,AO=1,AD=2,勾股定理知OD=,BH=AO所以C(2,).故答案为(2,).15、1【解析】【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案【详解】点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,a=4,b=3,则ab=1,故答案为1【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.16、1【解析】【分析】设四边形BCED的面积为x,则SADE=12x,由题意知DEBC且DE=BC,从而得,据此建立关于x的方程,解之可得【详解】设四边形BCED的面积为x,则SADE=12x,点D、E分别是边AB、AC的中点,DE是ABC的中位线,DEBC,且DE=BC,ADEABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质三、解答题(共8题,共72分)17、(1)y=x2+x2;(2)当t=2时,DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,2)或(3,14)【解析】(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与OAC相似,分当1m4时;当m1时;当m4时三种情况求出点P坐标即可【详解】(1)该抛物线过点A(4,0),B(1,0),将A与B代入解析式得:,解得:,则此抛物线的解析式为y=x2+x2;(2)如图,设D点的横坐标为t(0t4),则D点的纵坐标为t2+t2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x2,E点的坐标为(t,t2),DE=t2+t2(t2)=t2+2t,SDAC=×(t2+2t)×4=t2+4t=(t2)2+4,则当t=2时,DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为m2+m2,当1m4时,AM=4m,PM=m2+m2,又COA=PMA=90°,当=2时,APMACO,即4m=2(m2+m2),解得:m=2或m=4(舍去),此时P(2,1);当=时,APMCAO,即2(4m)=m2+m2,解得:m=4或m=5(均不合题意,舍去)当1m4时,P(2,1);类似地可求出当m4时,P(5,2);当m1时,P(3,14),综上所述,符合条件的点P为(2,1)或(5,2)或(3,14)【点睛】本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论18、作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题19、 (1)y2x2(2)这位乘客乘车的里程是15km【解析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k0),运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值【详解】(1)由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k0),由函数图象,得,解得: 故y与x的函数关系式为:y=2x+2; (2)32元>8元,当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.20、1【解析】先将除式括号里面的通分后,将除法转换成乘法,约分化简然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值【详解】解:原式解得,时,无意义,取当时,原式21、(1)证明见试题解析;(2)90°【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明ACDCBD;(2)由(1)知ACDCBD,然后根据相似三角形的对应角相等可得:A=BCD,然后由A+ACD=90°,可得:BCD+ACD=90°,即ACB=90°试题解析:(1)CD是边AB上的高,ADC=CDB=90°,ACDCBD;(2)ACDCBD,A=BCD,在ACD中,ADC=90°,A+ACD=90°,BCD+ACD=90°,即ACB=90° 考点:相似三角形的判定与性质22、见解析【解析】试题分析:证明ABEACD 即可.试题解析:法1:AB=AC,B=C,AD=CE,ADE=AED,ABEACD,BE=CD ,BD=CE,法2:如图,作AFBC于F,AB=AC,BF=CF,AD=AE,DF=EF,BFDF=CFEF,即BD=CE.23、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元【解析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【详解】(1).(2) 根据题意,得: 当时,随x的增大而增大当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.24、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=OC,1=ACO,2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90°,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90°,AB=2半径为1.1