河北省博野县重点达标名校2023年中考数学适应性模拟试题含解析.doc
-
资源ID:88305865
资源大小:869.50KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河北省博野县重点达标名校2023年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下面的几何体中,主(正)视图为三角形的是( )ABCD2下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )ABCD3在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A20B25C30D354如图,O的直径AB=2,C是弧AB的中点,AE,BE分别平分BAC和ABC,以E为圆心,AE为半径作扇形EAB,取3,则阴影部分的面积为()A4B74C6D5对于不为零的两个实数a,b,如果规定:ab,那么函数y2x的图象大致是()ABCD6的倒数是( )AB3CD7在平面直角坐标系内,点P(a,a+3)的位置一定不在()A第一象限B第二象限C第三象限D第四象限8若一组数据1、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )A0B2.5C3 D59如图,在矩形纸片ABCD中,已知AB,BC1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为( )ABCD10二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1mx+n的解集为_.12如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,且此时测得米的影长为米,则电线杆的高度为_米13计算:3(2)=_14在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:两人相遇前,甲的速度小于乙的速度;出发后1小时,两人行程均为10km;出发后1.5小时,甲的行程比乙多3km;甲比乙先到达终点其中正确的有_个15四边形ABCD中,向量_.16如图,点A是双曲线y在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且ACB120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为_17当a,b互为相反数,则代数式a2+ab2的值为_三、解答题(共7小题,满分69分)18(10分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一20.04二100.2三14b四a0.32五80.16请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 19(5分)为厉行节能减排,倡导绿色出行,今年3月以来“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值20(8分)如图,ABC中,ACB=90°,以BC为直径的O交AB于点D,过点D作O的切线交CB的延长线于点E,交AC于点F(1)求证:点F是AC的中点;(2)若A=30°,AF=,求图中阴影部分的面积21(10分)(1)问题发现如图1,在RtABC中,A=90°,=1,点P是边BC上一动点(不与点B重合),PAD=90°,APD=B,连接 CD(1)求的值;求ACD的度数(2)拓展探究如图 2,在RtABC中,A=90°,=k点P是边BC上一动点(不与点B重合),PAD=90°,APD=B,连接CD,请判断ACD与B 的数量关系以及PB与CD之间的数量关系,并说明理由(3)解决问题如图 3,在ABC中,B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),PAD=BAC,APD=B,连接CD若 PA=5,请直接写出CD的长22(10分)解方程:123(12分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积24(14分)如图,在RtABC中ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD(1)若,DC=4,求AB的长;(2)连接BE,若BE是DEC的外接圆的切线,求C的度数参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形故选C2、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.3、B【解析】设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:,当时,(亿),400-375=25,该行可贷款总量减少了25亿.故选B.4、A【解析】O的直径AB=2,C=90°,C是弧AB的中点,AC=BC,CAB=CBA=45°,AE,BE分别平分BAC和ABC,EAB=EBA=22.5°,AEB=180° (BAC+CBA)=135°,连接EO,EAB=EBA,EA=EB,OA=OB,EOAB,EO为RtABC内切圆半径,SABC=(AB+AC+BC)EO=ACBC,EO=1,AE2=AO2+EO2=12+(1)2=42,扇形EAB的面积=,ABE的面积=ABEO=1,弓形AB的面积=扇形EAB的面积ABE的面积=,阴影部分的面积=O的面积弓形AB的面积=()=4,故选:A.5、C【解析】先根据规定得出函数y2x的解析式,再利用一次函数与反比例函数的图象性质即可求解【详解】由题意,可得当2x,即x2时,y2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2x,即x2时,y,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0x2,故B错误故选:C【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y2x的解析式是解题的关键6、A【解析】解:的倒数是故选A【点睛】本题考查倒数,掌握概念正确计算是解题关键7、D【解析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限, 故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.8、C【解析】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,符合排列顺序(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,不符合排列顺序(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=a,解得a=2.5,符合排列顺序(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5,不符合排列顺序(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,a不可能是1故选C【点睛】本题考查中位数;算术平均数9、D【解析】点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题【详解】如图,点F的运动路径的长为弧FF'的长,在RtABC中,tanBAC=,BAC=30°,CAF=BAC=30°,BAF=60°,FAF=120°,弧FF'的长=故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径10、C【解析】试题分析:二次函数图象开口方向向下,a0,对称轴为直线0,b0,与y轴的正半轴相交,c0,的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合故选C考点:1二次函数的图象;2一次函数的图象;3反比例函数的图象二、填空题(共7小题,每小题3分,满分21分)11、x1【解析】把y=2代入y=x+1,得x=1,点P的坐标为(1,2),根据图象可以知道当x1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1mx+n的解集是:x1,故答案为x1【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合12、(14+2)米【解析】过D作DEBC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可【详解】如图,过D作DEBC的延长线于E,连接AD并延长交BC的延长线于FCD=8,CD与地面成30°角,DE=CD=×8=4,根据勾股定理得:CE=41m杆的影长为2m,=,EF=2DE=2×4=8,BF=BC+CE+EF=20+4+8=(28+4)=,AB=(28+4)=14+2故答案为(14+2)【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键13、2+2【解析】根据平面向量的加法法则计算即可【详解】3(2)=3+2=2+2,故答案为:2+2,【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键14、1【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故错误;由图可得,两人在1小时时相遇,行程均为10km,故正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故正确15、【解析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得: =.故答案为.点睛:理解向量运算的三角形法则是正确解答本题的关键.16、1【解析】根据题意得出AODOCE,进而得出,即可得出k=EC×EO=1【详解】解:连接CO,过点A作ADx轴于点D,过点C作CEx轴于点E,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且ACB=120°,COAB,CAB=10°,则AOD+COE=90°,DAO+AOD=90°,DAO=COE,又ADO=CEO=90°,AODOCE, =tan60°= ,= =1,点A是双曲线y=- 在第二象限分支上的一个动点,SAOD=×|xy|= ,SEOC= ,即×OE×CE=,k=OE×CE=1,故答案为1【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出AODOCE是解题关键17、1【解析】分析:由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.详解:a与b互为相反数,a+b=0,a1+ab-1=a(a+b)-1=0-1=-1.故答案为:-1.点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.三、解答题(共7小题,满分69分)18、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图19、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,×1000+×1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为120、(1)见解析;(2) 【解析】(1)连接OD、CD,如图,利用圆周角定理得到BDC=90°,再判定AC为O的切线,则根据切线长定理得到FD=FC,然后证明3=A得到FD=FA,从而有FC=FA;(2)在RtACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明OBD为等边三角形得到BOD=60°,接着根据切线的性质得到ODEF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=SODE-S扇形BOD进行计算即可【详解】(1)证明:连接OD、CD,如图,BC为直径,BDC=90°,ACB=90°,AC为O的切线,EF为O的切线,FD=FC,1=2,1+A=90°,2+3=90°,3=A,FD=FA,FC=FA,点F是AC中点;(2)解:在RtACB中,AC=2AF=2,而A=30°,CBA=60°,BC=AC=2,OB=OD,OBD为等边三角形,BOD=60°,EF为切线,ODEF,在RtODE中,DE=OD=,S阴影部分=SODES扇形BOD=×1×=【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式21、(1)1,45°;(2)ACD=B, =k;(3).【解析】(1)根据已知条件推出ABPACD,根据全等三角形的性质得到PB=CD,ACD=B=45°,于是得到 根据已知条件得到ABCAPD,由相似三角形的性质得到,得到 ABPCAD,根据相似三角形的性质得到结论;过A作AHBC 于 H,得到ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出ABPCAD,根据相似三角形的性质即可得到结论【详解】(1)A=90°,AB=AC,B=45°,PAD=90°,APD=B=45°,AP=AD,BAP=CAD,在ABP 与ACD 中,AB=AC, BAP=CAD,AP=AD,ABPACD,PB=CD,ACD=B=45°,=1,(2)BAC=PAD=90°,B=APD,ABCAPD,BAP+PAC=PAC+CAD=90°,BAP=CAD,ABPCAD,ACD=B,(3)过 A 作 AHBC 于 H,B=45°,ABH 是等腰直角三角形, AH=BH=4,BC=12,CH=8,PH=3,PB=1,BAC=PAD=,B=APD,ABCAPD,,BAP+PAC=PAC+CAD,BAP=CAD,ABPCAD,即 过 A 作 AHBC 于 H,B=45°,ABH 是等腰直角三角形, AH=BH=4,BC=12,CH=8,PH=3,PB=7,BAC=PAD=,B=APD,ABCAPD,BAP+PAC=PAC+CAD,BAP=CAD,ABPCAD,即 【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键22、【解析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】原方程变形为,方程两边同乘以(2x1),得2x51(2x1),解得 检验:把代入(2x1),(2x1)0,是原方程的解,原方程的【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.23、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=×2×3+×2×1,=3+1,=1考点:反比例函数与一次函数的交点问题24、(1);(2)30° 【解析】(1)由于DE垂直平分AC,那么AE=EC,DEC=90°,而ABC=DEC=90°,C=C,易证,ABCDEC,A=CDE,于是sinCDE=sinA,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于DEC=90°,那么EDC+C=90°,又BE是切线,那么BEO=90°,于是EOB+EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是EBC=C,从而有EOB=EDC,又OE=OD,易证DEO是等边三角形,那么EDC=60°,从而可求C【详解】解:(1)AC的垂直平分线交BC于D点,交AC于E点,DEC=90°,AE=EC,ABC=90°,C=C,A=CDE,ABCDEC,sinCDE=,AB:AC=DE:DC,DC=4,ED=3,DE=,AC=6,AB:6=:4,AB=;(2)连接OE,DEC=90°,EDC+C=90°,BE是O的切线,BEO=90°,EOB+EBC=90°,E是AC的中点,ABC=90°,BE=EC,EBC=C,EOB=EDC,又OE=OD,DOE是等边三角形,EDC=60°,C=30°【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质解题的关键是连接OE,构造直角三角形