江西省大余中学2023年高三下学期第五次调研考试数学试题含解析.doc
2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若总有恒成立.记的最小值为,则的最大值为( )A1BCD2函数的定义域为,集合,则( )ABCD3已知直四棱柱的所有棱长相等,则直线与平面所成角的正切值等于( )ABCD4设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( )ABCD5若为虚数单位,则复数的共轭复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限6在直三棱柱中,己知,则异面直线与所成的角为( )ABCD7已知集合,则=( )ABCD8若复数满足,则( )ABC2D9在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则( )A5BC4D1610已知实数,则的大小关系是()ABCD11已知角的终边经过点,则的值是A1或B或C1或D或12已知函数(,且)在区间上的值域为,则( )ABC或D或4二、填空题:本题共4小题,每小题5分,共20分。13若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为_.14在中,角、所对的边分别为、,若,则的取值范围是_15设定义域为的函数满足,则不等式的解集为_16验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数u(x)xlnx,v(x)x1,mR(1)令m2,求函数h(x)的单调区间;(2)令f(x)u(x)v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值18(12分)设函数,()求曲线在点(1,0)处的切线方程;()求函数在区间上的取值范围19(12分)在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父系的遗传因子和一个母系的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的可以把第代的遗传设想为第次实验的结果,每一次实验就如同抛一枚均匀的硬币,比如对具有性状的父系来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母系也一样父系母系各自随机选择得到的遗传因子再配对形成子代的遗传性状假设三种遗传性状,(或),在父系和母系中以同样的比例:出现,则在随机杂交实验中,遗传因子被选中的概率是,遗传因子被选中的概率是称,分别为父系和母系中遗传因子和的频率,实际上是父系和母系中两个遗传因子的个数之比基于以上常识回答以下问题:(1)如果植物的上一代父系母系的遗传性状都是,后代遗传性状为,(或),的概率各是多少?(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父系和母系中仅有遗传性状为和(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,求杂交所得子代的三种遗传性状,(或),所占的比例(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除性状为的个体假设得到的第代总体中3种遗传性状,(或),所占比例分别为设第代遗传因子和的频率分别为和,已知有以下公式证明是等差数列(4)求的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?20(12分)如图,四棱锥中,平面,.()证明:;()若是中点,与平面所成的角的正弦值为,求的长.21(12分)如图,在中,已知,为线段的中点,是由绕直线旋转而成,记二面角的大小为.(1)当平面平面时,求的值;(2)当时,求二面角的余弦值.22(10分)如图,平面四边形为直角梯形,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值,即.根据题意化简可得,求得,再换元求导分析最大值即可.【详解】由题, 总有即恒成立.设,则的最大值小于等于0.又,若则,在上单调递增, 无最大值.若,则当时,在上单调递减, 当时,在上单调递增.故在处取得最大值.故,化简得.故,令,可令,故,当时, ,在递减;当时, ,在递增.故在处取得极大值,为.故的最大值为.故选:C【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.2、A【解析】根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.3、D【解析】以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系求解平面的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系设,则,设平面的法向量为,则取,得设直线与平面所成角为,则,直线与平面所成角的正切值等于故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.4、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.5、B【解析】由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解【详解】由题意得,因为,所以在复平面内对应的点位于第二象限故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.6、C【解析】由条件可看出,则为异面直线与所成的角,可证得三角形中,解得从而得出异面直线与所成的角【详解】连接,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,面,又,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题7、C【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,意在考查学生的计算能力.8、D【解析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.9、C【解析】根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,由正弦定理得,又,又,又,.,由余弦定理可得,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.10、B【解析】根据,利用指数函数对数函数的单调性即可得出【详解】解:,故选:B【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题11、B【解析】根据三角函数的定义求得后可得结论【详解】由题意得点与原点间的距离当时,当时,综上可得的值是或故选B【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可12、C【解析】对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,所以,所以;当时,所以,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值.【详解】解:如图,设二面角平面角为,点Q到底面的距离为,点Q到定直线的距离为d,则,即.点Q到底面的距离与到点P的距离之比为正常数k,则,动点Q的轨迹是抛物线,即则.二面角的平面角的余弦值为解得:().故答案为:.【点睛】本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题.14、【解析】计算出角的取值范围,结合正弦定理可求得的取值范围.【详解】,则,所以,由正弦定理,.因此,的取值范围是.故答案为:.【点睛】本题主要考查了正弦定理,正弦函数图象和性质,考查了转化思想,属于基础题15、【解析】根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论【详解】设F(x),则F(x),F(x)0,即函数F(x)在定义域上单调递增,即F(x)F(2x),即x1不等式的解为故答案为:【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键16、【解析】首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.【详解】根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的概率为.故答案为:【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间是(0,e),单调递减区间是(e,+)(2)【解析】(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f(x)lnxmx0有两个正根,由此得到m(x2x1)lnx2lnx1,m(x2+x1)lnx2+lnx1,消参数m化简整理可得ln(x1x2)ln,设t,构造函数g(t)()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1x2的最大值【详解】(1)令m2,函数h(x),h(x),令h(x)0,解得xe,当x(0,e)时,h(x)0,当x(e,+)时,h(x)0,函数h(x)单调递增区间是(0,e),单调递减区间是(e,+)(2)f(x)u(x)v(x)xlnxx+1,f(x)1+lnxmx1lnxmx,函数f(x)恰有两个极值点x1,x2,f(x)lnxmx0有两个不等正根,lnx1mx10,lnx2mx20,两式相减可得lnx2lnx1m(x2x1),两式相加可得m(x2+x1)lnx2+lnx1,ln(x1x2)ln,设t,1e,1te,设g(t)()lnt,g(t),令(t)t212tlnt,(t)2t2(1+lnt)2(t1lnt),再令p(t)t1lnt,p(t)10恒成立,p(t)在(1,e单调递增,(t)p(t)p(1)11ln10,(t)在(1,e单调递增,g(t)(t)(1)112ln10,g(t)在(1,e单调递增,g(t)maxg(e),ln(x1x2),x1x2故x1x2的最大值为【点睛】本题考查了利用导数求函数的最值和最值,考查了函数与方程的思想,转化与化归思想,属于难题18、(1)(2)【解析】分析:(1)先断定在曲线上,从而需要求,令,求得结果,注意复合函数求导法则,接着应用点斜式写出直线的方程;(2)先将函数解析式求出,之后借助于导数研究函数的单调性,从而求得函数在相应区间上的最值.详解:()当,. , 当, 所以切线方程为.(),因为,所以.令,则在单调递减, 因为,所以在上增,在单调递增. , 因为,所以在区间上的值域为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有导数的几何意义,曲线在某个点处的切线方程的求法,复合函数求导,函数在给定区间上的最值等,在解题的过程中,需要对公式的正确使用.19、(1),(或),的概率分别是,(2)(3)答案见解析(4)答案见解析【解析】(1)利用相互独立事件的概率乘法公式即可求解.(2)利用相互独立事件的概率乘法公式即可求解.(3)由(2)知,求出、,利用等差数列的定义即可证出. (4)利用等差数列的通项公式可得,从而可得,再由,利用式子的特征可得越来越小,进而得出结论.【详解】(1)即与是父亲和母亲的性状,每个因子被选择的概率都是,故出现的概率是,或出现的概率是,出现的概率是所以:,(或),的概率分别是,(2)(3)由(2)知于是是等差数列,公差为1(4)其中,(由(2)的结论得)所以于是,很明显,越大,越小,所以这种实验长期进行下去,越来越小,而是子代中所占的比例,也即性状会渐渐消失【点睛】本题主要考查了相互独立事件的概率乘法公式、等差数列的定义、等差数列的通项公式,考查了学生的分析能力,属于中档题,20、()见解析;()【解析】()取的中点,连接,由,得三点共线,且,又,再利用线面垂直的判定定理证明.()设,则,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加求得,再过作,则平面,即点到平面的距离,由是中点,得到到平面的距离,然后根据与平面所成的角的正弦值为求解.【详解】()取的中点,连接,由,得三点共线,且,又,所以平面,所以.()设,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加得:,所以 ,过作,则平面,即点到平面的距离,因为是中点,所以为到平面的距离,因为与平面所成的角的正弦值为,即,解得.【点睛】本题主要考查线面垂直的判定定理,线面角的应用,还考查了转化化归的思想和空间想象运算求解的能力,属于中档题.21、 (1) ;(2).【解析】(1)平面平面,建立坐标系,根据法向量互相垂直求得;(2)求两个平面的法向量的夹角.【详解】(1) 如图,以为原点,在平面内垂直于的直线为轴所在的直线分别为轴,轴,建立空间直角坐标系,则,设为平面的一个法向量,由得,取,则因为平面的一个法向量为由平面平面,得所以即.(2) 设二面角的大小为,当平面的一个法向量为,综上,二面角的余弦值为.【点睛】本题考查用空间向量求平面间的夹角, 平面与平面垂直的判定,二面角的平面角及求法,难度一般.22、(1);(2).【解析】(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,在梯形中,则,所以,;(2)取中点,连接、,过点作,则,作于,连接. 为的中点,且,且,所以,四边形为平行四边形,由于,为的中点,所以,同理,平面,为面与面所成的锐二面角,则,平面,平面,面,为与底面所成的角,.在中,.因此,与平面所成角的正弦值为.【点睛】本题考查利用线面平行的性质求参数,同时也考查了线面角的计算,涉及利用二面角求线段长度,考查推理能力与计算能力,属于中等题.