河南省周口沈丘县联考2023届毕业升学考试模拟卷数学卷含解析.doc
-
资源ID:88306247
资源大小:1.12MB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河南省周口沈丘县联考2023届毕业升学考试模拟卷数学卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若xy,则下列式子错误的是( )Ax3y3B3x3yCx+3y+3D21903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A810 年B1620 年C3240 年D4860 年3如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()ABCD4下列命题中假命题是( )A正六边形的外角和等于B位似图形必定相似C样本方差越大,数据波动越小D方程无实数根5下列四个式子中,正确的是()A =±9B =6C()2=5D=46下列图形中,是中心对称图形但不是轴对称图形的是()ABCD7-2的绝对值是()A2B-2C±2D8抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x21012y04664从上表可知,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在对称轴左侧部分是上升的9的相反数是()AB-CD10若分式的值为0,则x的值为()A-2B0C2D±211|3|的值是( )A3BC3D12某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为( )A10=B+10=C10=D+10=二、填空题:(本大题共6个小题,每小题4分,共24分)13同时掷两粒骰子,都是六点向上的概率是_14如图,CE是ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E连接AC,BE,DO,DO与AC交于点F,则下列结论:四边形ACBE是菱形;ACDBAE;AF:BE2:1;S四边形AFOE:SCOD2:1其中正确的结论有_(填写所有正确结论的序号)15若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 16在RtABC中,C90°,AB6,cosB,则BC的长为_17如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_18如图,抛物线yax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线MPN上移动,它们的坐标分别为M(1,4)、P(3,4)、N(3,1)若在抛物线移动过程中,点A横坐标的最小值为3,则ab+c的最小值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简,然后从中选出一个合适的整数作为的值代入求值20(6分)问题:将菱形的面积五等分小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题如图,点O是菱形ABCD的对角线交点,AB5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整(1)在AB边上取点E,使AE4,连接OA,OE;(2)在BC边上取点F,使BF_,连接OF;(3)在CD边上取点G,使CG_,连接OG;(4)在DA边上取点H,使DH_,连接OH由于AE_可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA21(6分)如图,在中,,点是上一点尺规作图:作,使与、都相切(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:22(8分)如图,在ABC中,CDAB于点D,tanA2cosBCD,(1)求证:BC2AD;(2)若cosB,AB10,求CD的长.23(8分)已知ACDC,ACDC,直线MN经过点A,作DBMN,垂足为B,连接CB(1)直接写出D与MAC之间的数量关系;(2)如图1,猜想AB,BD与BC之间的数量关系,并说明理由;如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当BCD30°,BD时,直接写出BC的值24(10分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把BAD沿直线BD折叠,点A的对应点为A(1)若点A落在矩形的对角线OB上时,OA的长= ;(2)若点A落在边AB的垂直平分线上时,求点D的坐标;(3)若点A落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可)25(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DEDB,求证:(1)BCEADE;(2)ABBC=BDBE26(12分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在 一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,则哥哥去。(1)求小丽随机取出一根筷子是红色的概率;(2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。27(12分)如图1,已知扇形MON的半径为,MON=90°,点B在弧MN上移动,联结BM,作ODBM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,COM的正切值为y.(1)如图2,当ABOM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当OAC为等腰三角形时,求x的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确故选B2、B【解析】根据半衰期的定义,函数图象的横坐标,可得答案【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键3、D【解析】如图,连接AB,由圆周角定理,得C=ABO,在RtABO中,OA=3,OB=4,由勾股定理,得AB=5,故选D4、C【解析】试题解析:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C考点:命题与定理5、D【解析】A、表示81的算术平方根;B、先算-6的平方,然后再求的值;C、利用完全平方公式计算即可;D、=【详解】A、9,故A错误;B、-=-6,故B错误;C、()2=2+2+3=5+2,故C错误;D、=4,故D正确故选D【点睛】本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键6、B【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误故选B【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、A【解析】根据绝对值的性质进行解答即可【详解】解:1的绝对值是:1故选:A【点睛】此题考查绝对值,难度不大8、C【解析】当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C9、C【解析】根据只有符号不同的两个数互为相反数进行解答即可.【详解】与只有符号不同,所以的相反数是,故选C【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.10、C【解析】由题意可知:,解得:x=2,故选C.11、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.12、B【解析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可【详解】解:设第一批购进x件衬衫,则所列方程为:+10=故选B【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.【详解】解:都是六点向上的概率是.【点睛】本题考查了概率公式的应用.14、【解析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【详解】四边形ABCD是平行四边形,ABCD,AB=CD,EC垂直平分AB,OA=OB=AB=DC,CDCE,OADC,=,AE=AD,OE=OC,OA=OB,OE=OC,四边形ACBE是平行四边形,ABEC,四边形ACBE是菱形,故正确,DCE=90°,DA=AE,AC=AD=AE,ACD=ADC=BAE,故正确,OACD,故错误,设AOF的面积为a,则OFC的面积为2a,CDF的面积为4a,AOC的面积=AOE的面积=1a,四边形AFOE的面积为4a,ODC的面积为6aS四边形AFOE:SCOD=2:1故正确.故答案是:【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.15、0或1【解析】分析:需要分类讨论:若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;若m0,则函数y=mx2+2x+1是二次函数,根据题意得:=44m=0,解得:m=1。当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。16、4【解析】根据锐角的余弦值等于邻边比对边列式求解即可.【详解】C=90°,AB=6,BC=4.【点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在RtABC中, , ,.17、【解析】解:如图,作DFy轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BHx轴于H,四边形ABCD是矩形,BAD=90°,DAF+OAE=90°,AEO+OAE=90°,DAF=AEO,AB=2AD,E为AB的中点,AD=AE,在ADF和EAO中,DAF=AEO,AFD=AOE=90°,AD=AE,ADFEAO(AAS),DF=OA=1,AF=OE,D(1,k),AF=k1,同理;AOEBHE,ADFCBG,BH=BG=DF=OA=1,EH=CG=OE=AF=k1,OK=2(k1)+1=2k1,CK=k2,C(2k1,k2),(2k1)(k2)=1k,解得k1=,k2=,k10,k=故答案为 点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征图象上的点(x,y)的横纵坐标的积是定值k,即xy=k18、1【解析】由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、-1【解析】先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.20、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA,进一步求得SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA即可【详解】(1)在AB边上取点E,使AE4,连接OA,OE;(2)在BC边上取点F,使BF3,连接OF;(3)在CD边上取点G,使CG2,连接OG;(4)在DA边上取点H,使DH1,连接OH由于AEEBBFFCCGGDDHHA可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.21、(1)详见解析;(2)详见解析.【解析】(1)利用角平分线的性质作出BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案(2)根据切线的性质,圆周角的性质,由相似判定可证CDBDEB,再根据相似三角形的性质即可求解【详解】解:(1)如图,及为所求(2)连接是的切线,即,是直径,又【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键22、(1)证明见解析;(2)CD2.【解析】(1)根据三角函数的概念可知tanA,cosBCD,根据tanA2cosBCD即可得结论;(2)由B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可【详解】(1)tanA,cosBCD,tanA2cosBCD,2·,BC2AD.(2)cosB,BC2AD,.AB10,AD×104,BD1046,BC8,CD2.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.23、(1)相等或互补;(2)BD+ABBC;ABBDBC;(3)BC 或.【解析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)作辅助线,证明BCDFCA,得BCFC,BCDFCA,FCB90°,即BFC是等腰直角三角形,即可解题, 在射线AM上截取AFBD,连接CF,证明BCDFCA,得BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,ACCD,BDMN,ACDBDC90°,在四边形ABDC中,BAD+D360°ACDBDC180°,BAC+CAM180°,CAMD;当点C,D在直线MN两侧时,如图2,ACDABD90°,AECBED,CABD,CAB+CAM180°,CAM+D180°,即:D与MAC之间的数量是相等或互补;(2)猜想:BD+ABBC如图3,在射线AM上截取AFBD,连接CF又DFAC,CDACBCDFCA,BCFC,BCDFCAACCDACD90°即ACB+BCD90°ACB+FCA90°即FCB90°BFAF+ABBFBD+AB;如图2,在射线AM上截取AFBD,连接CF,又DFAC,CDACBCDFCA,BCFC,BCDFCAACCDACD90°即ACB+BCD90°ACB+FCA90°即FCB90°BFABAFBFABBD;(3)当点C,D在直线MN同侧时,如图31,由(2)知,ACFDCB,CFBC,ACFACD90°,ABC45°,ABD90°,CBD45°,过点D作DGBC于G,在RtBDG中,CBD45°,BD,DGBG1,在RtCGD中,BCD30°,CGDG,BCCG+BG+1,当点C,D在直线MN两侧时,如图21,过点D作DGCB交CB的延长线于G,同的方法得,BG1,CG,BCCGBG1即:BC 或,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.24、(1)1;(2)点D(82,0);(3)点D的坐标为(31,0)或(31,0)【解析】分析:()由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA=1,据此可得答案; ()连接AA,利用折叠的性质和中垂线的性质证BAA是等边三角形,可得ABD=ABD=30°,据此知AD=ABtanABD=2,继而可得答案; ()分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得详解:()如图1,由题意知OA=8、AB=1,OB=10,由折叠知,BA=BA=1,OA=1 故答案为1; ()如图2,连接AA点A落在线段AB的中垂线上,BA=AA BDA是由BDA折叠得到的,BDABDA,ABD=ABD,AB=AB,AB=AB=AA,BAA是等边三角形,ABA=10°,ABD=ABD=30°,AD=ABtanABD=1tan30°=2,OD=OAAD=82,点D(82,0); ()如图3,当点D在OA上时 由旋转知BDABDA,BA=BA=1,BAD=BAD=90° 点A在线段OA的中垂线上,BM=AN=OA=4,AM=2,AN=MNAM=ABAM=12,由BMA=AND=BAD=90°知BMAAND,则=,即=,解得:DN=35,则OD=ON+DN=4+35=31,D(31,0); 如图4,当点D在AO延长线上时,过点A作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,由旋转知BDABDA,BA=BA=1,BAD=BAD=90° 点A在线段OA的中垂线上,AM=AN=MN=4,则MC=BN=2,MO=MC+OC=2+1,由EMA=ANB=BAD=90°知EMAANB,则=,即=,解得:ME=,则OE=MOME=1+ DOE=AME=90°、OED=MEA,DOEAME,=,即=,解得:DO=3+1,则点D的坐标为(31,0) 综上,点D的坐标为(31,0)或(31,0)点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点25、(1)见解析;(2)见解析.【解析】(1)由DAC=DCA,对顶角AED=BEC,可证BCEADE(2)根据相似三角形判定得出ADEBDA,进而得出BCEBDA,利用相似三角形的性质解答即可【详解】证明:(1)AD=DC,DAC=DCA,DC2=DEDB,=,CDE=BDC,CDEBDC,DCE=DBC,DAE=EBC,AED=BEC,BCEADE,(2)DC2=DEDB,AD=DCAD2=DEDB,同法可得ADEBDA,DAE=ABD=EBC,BCEADE,ADE=BCE,BCEBDA,=,ABBC=BDBE【点睛】本题考查了相似三角形的判定与性质关键是要懂得找相似三角形,利用相似三角形的性质求解26、(1);(2).【解析】(1)直接利用概率公式计算;(2)画树状图展示所有36种等可能的结果数,再找出两人取出的筷子颜色相同的结果数,然后根据概率公式求解【详解】(1)小丽随机取出一根筷子是红色的概率=;(2)画树状图为:共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为12,所以小丽随爸爸去看新春灯会的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率27、(1)证明见解析;(2) .();(3) .【解析】分析:(1)先判断出ABM=DOM,进而判断出OACBAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论详解:(1)ODBM,ABOM,ODM=BAM=90°ABM+M=DOM+M,ABM=DOMOAC=BAM,OC=BM,OACBAM, AC=AM(2)如图2,过点D作DEAB,交OM于点EOB=OM,ODBM,BD=DMDEAB,AE=EMOM=,AE=DEAB, ()(3)(i) 当OA=OC时在RtODM中,解得,或(舍)(ii)当AO=AC时,则AOC=ACOACOCOB,COB=AOC,ACOAOC,此种情况不存在()当CO=CA时,则COA=CAO=CAOM,M=90°,90°,45°,BOA=290°BOA90°,此种情况不存在即:当OAC为等腰三角形时,x的值为点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键