江苏省无锡市江阴市澄东片2023年中考联考数学试卷含解析.doc
-
资源ID:88306292
资源大小:677.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省无锡市江阴市澄东片2023年中考联考数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列四个图案中,不是轴对称图案的是()ABCD2如图,ABC内接于O,AD为O的直径,交BC于点E,若DE=2,OE=3,则tanACB·tanABC=( )A2B3C4D53一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()ABCD4二次函数ya(xm)2n的图象如图,则一次函数ymx+n的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限5若,是一元二次方程3x2+2x9=0的两根,则的值是( ).ABCD6二次函数y=ax2+bx+c(a0)的图象如图,a,b,c的取值范围( )Aa<0,b<0,c<0 Ba<0,b>0,c<0Ca>0,b>0,c<0 Da>0,b<0,c<07PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A0.25×105B0.25×106C2.5×105D2.5×10682016的相反数是( )ABCD9为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户)1234月用电量(度/户)30425051那么关于这10户居民月用电量(单位:度),下列说法错误的是()A中位数是50B众数是51C方差是42D极差是2110如图,空心圆柱体的左视图是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11因式分解:-2x2y+8xy-6y=_12下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要_根火柴.13一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_14如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则CGE=_15将抛物线y2x2平移,使顶点移动到点P(3,1)的位置,那么平移后所得新抛物线的表达式是_16若点A(2,y1)、B(1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为_17计算:.三、解答题(共7小题,满分69分)18(10分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分钟)10103503020850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天如果小王四月份生产甲种产品a件(a为正整数)用含a的代数式表示小王四月份生产乙种产品的件数;已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围19(5分)已知线段a及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.20(8分)如图,已知点E,F分别是ABCD的边BC,AD上的中点,且BAC=90°(1)求证:四边形AECF是菱形;(2)若B=30°,BC=10,求菱形AECF面积21(10分)如图,AEFD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:ABEDCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形22(10分)某商场一种商品的进价为每件30元,售价为每件40元每天可以销售48件,为尽快减少库存,商场决定降价促销若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?23(12分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果24(14分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.2、C【解析】如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案【详解】如图,连接BD、CD在和中,同理可得:,即为O的直径故选:C【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键3、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.4、A【解析】由抛物线的顶点坐标在第四象限可得出m0,n0,再利用一次函数图象与系数的关系,即可得出一次函数ymx+n的图象经过第一、二、三象限【详解】解:观察函数图象,可知:m0,n0,一次函数ymx+n的图象经过第一、二、三象限故选A【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k0,b0ykx+b的图象在一、二、三象限”是解题的关键5、C【解析】分析:根据根与系数的关系可得出+=-、=-3,将其代入=中即可求出结论详解:、是一元二次方程3x2+2x-9=0的两根,+=-,=-3,=故选C点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键6、D【解析】试题分析:根据二次函数的图象依次分析各项即可。由抛物线开口向上,可得,再由对称轴是,可得,由图象与y轴的交点再x轴下方,可得,故选D.考点:本题考查的是二次函数的性质点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。7、D【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而故选D8、C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.9、C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2=42.1故选C考点:1.方差;2.中位数;3.众数;4.极差10、C【解析】根据从左边看得到的图形是左视图,可得答案【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图二、填空题(共7小题,每小题3分,满分21分)11、2 y (x1)( x3) 【解析】分析:提取公因式法和十字相乘法相结合因式分解即可.详解:原式 故答案为点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底.12、【解析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成,组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.13、120°【解析】设扇形的半径为r,圆心角为n°利用扇形面积公式求出r,再利用弧长公式求出圆心角即可【详解】设扇形的半径为r,圆心角为n°由题意:,r4,n120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.14、45°【解析】试题解析:如图,连接CE,AB=2,BC=1,DE=EF=1,CD=GF=2,在CDE和GFE中CDEGFE(SAS),CE=GE,CED=GEF,故答案为15、y2(x+3)2+1【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式【详解】抛物线y2x2平移,使顶点移到点P(3,1)的位置,所得新抛物线的表达式为y2(x+3)2+1故答案为:y2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式16、y2y1y2 【解析】分析:设t=k22k+2,配方后可得出t1,利用反比例函数图象上点的坐标特征可求出y1、y2、y2的值,比较后即可得出结论详解:设t=k22k+2,k22k+2=(k1)2+21,t1点A(2,y1)、B(1,y2)、C(1,y2)都在反比例函数y=(k为常数)的图象上,y1=,y2=t,y2=t,又tt,y2y1y2故答案为:y2y1y2点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y2的值是解题的关键17、3+【解析】本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式=2×+2+1,=2+2+1,=3+【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算三、解答题(共7小题,满分69分)18、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)600-; a1【解析】(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;(2)根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;根据“小王四月份的工资不少于1500元”即可列出不等式.【详解】(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:,解这个方程组得:,答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(25×8)=600-;依题意:1.5a+2.8(600-)1500,16800.6a1500,解得:a1.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.19、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为【解析】试题分析:(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;(2)如下图,连接OA、OB、OC、OD,作OEAB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得OCD的面积,这样即可由S阴影=6SOCD求出阴影部分的面积了.试题解析:(1)所作图形如下图所示:(2)如下图,连接OA、OB、OC、OD,作OEAB于点E,则由题意可得:OA=OB=6,AOB=120°,OEB=90°,AE=BE,BOC,AOD都是等腰三角形,OCD的三边三角形,ABO=30°,BC=OC=CD=AD,BE=OB·cos30°=,OE=3,AB=,CD=,SOCD=,S阴影=6SOCD=.20、(1)见解析(2)【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积试题解析:(1)证明:四边形ABCD是平行四边形,ADBC,AD=BC在RtABC中,BAC=90°,点E是BC边的中点,AE=CE=BC同理,AF=CF=ADAF=CE四边形AECF是平行四边形平行四边形AECF是菱形(2)解:在RtABC中,BAC=90°,B=30°,BC=10,AC=5,AB=连接EF交于点O,ACEF于点O,点O是AC中点OE=EF=菱形AECF的面积是AC·EF=考点:1菱形的性质和面积;2平行四边形的性质;3解直角三角形21、(1)证明见解析;(2)证明见解析【解析】(1)根据平行线性质求出B=C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;(2)借助(1)中结论ABEDCF,可证出AE平行且等于DF,即可证出结论.证明:(1)如图,ABCD,B=CBF=CEBE=CF在ABE与DCF中,ABEDCF(SAS); (2)如图,连接AF、DE由(1)知,ABEDCF,AE=DF,AEB=DFC,AEF=DFE,AEDF,以A、F、D、E为顶点的四边形是平行四边形22、(1)两次下降的百分率为10%; (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元【解析】(1)设每次降价的百分率为 x,(1x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x40×(1x)232.4x10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得 解得:1.1,2.1,有利于减少库存,y2.1答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可23、(1)50,108°,补图见解析;(2)9.6;(3)【解析】(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)E景点接待游客数所占的百分比为:×100%=12%,2018年“五一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,同时选择去同一个景点的概率=【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图24、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元【解析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可本题解析:解:(1)若7.5x70,得x>4,不符合题意;则5x1070,解得x12.答:工人甲第12天生产的产品数量为70件(2)由函数图象知,当0x4时,P40,当4<x14时,设Pkxb,将(4,40)、(14,50)代入,得解得Px36.当0x4时,W(6040)·7.5x150x,W随x的增大而增大,当x4时,W最大600;当4<x14时,W(60x36)(5x10)5x2110x2405(x11)2845,当x11时,W最大845.845>600,当x11时,W取得最大值845元答:第11天时,利润最大,最大利润是845元点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题