江苏省江都大桥初中2023年中考数学模拟试题含解析.doc
-
资源ID:88306353
资源大小:743KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省江都大桥初中2023年中考数学模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A8,6 B7,6 C7,8 D8,72下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A B C D3据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A9.29×109B9.29×1010C92.9×1010D9.29×10114下列事件中必然发生的事件是()A一个图形平移后所得的图形与原来的图形不全等B不等式的两边同时乘以一个数,结果仍是不等式C200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D随意翻到一本书的某页,这页的页码一定是偶数5下列计算正确的是()A=B =±2Ca6÷a2=a3D(a2)3=a66在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )A圆锥B圆柱C球D正方体7一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABCD8孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A五丈B四丈五尺C一丈D五尺9如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()ABCD10如图,二次函数yax2bxc(a0)的图象与x轴交于A,B两点,与y轴交于点C,且OAOC则下列结论:abc0;acb10;OA·OB.其中正确结论的个数是( )A4B3C2D1二、填空题(共7小题,每小题3分,满分21分)11(2016辽宁省沈阳市)如图,在RtABC中,A=90°,AB=AC,BC=20,DE是ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O若OMN是直角三角形,则DO的长是_12如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为_13如图,在菱形ABCD中,于E,则菱形ABCD的面积是_14如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是_海里(结果精确到个位,参考数据:,)15因式分解:a3a=_16分解因式:_17计算:|2|+()1=_三、解答题(共7小题,满分69分)18(10分)如图,半圆O的直径AB5cm,点M在AB上且AM1cm,点P是半圆O上的动点,过点B作BQPM交PM(或PM的延长线)于点Q设PMxcm,BQycm(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm11.522.533.54y/cm03.7_3.83.32.5_(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为_cm19(5分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究下面是小东的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012336说明:补全表格时相关数据保留一位小数建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:直接写出周长C的取值范围是_20(8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”请指出哪位同学的调查方式最合理 类别频数(人数)频率武术类 0.25书画类200.20棋牌类15b器乐类 合计a1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图请你根据以上图表提供的信息解答下列问题:a=_,b=_;在扇形统计图中,器乐类所对应扇形的圆心角的度数是_;若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程21(10分)(1)计算:(1)0|2|+;(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EFDE,交BC的延长线于点F,求F的度数22(10分)如图,AOB=45°,点M,N在边OA上,点P是边OB上的点(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4,若x=0时,使P、M、N构成等腰三角形的点P有个;若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是_23(12分)已知:关于x的方程x2(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值24(14分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,.(1)求教学楼的高度;(2)求的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数2、C【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.3、B【解析】科学记数法的表示形式为a×1n的形式,其中1|a|1,n为整数确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1【详解】解:929亿=92900000000=9.29×11故选B【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键4、C【解析】直接利用随机事件、必然事件、不可能事件分别分析得出答案【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键5、D【解析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算【详解】A. 不是同类二次根式,不能合并,故A选项错误;B.=2±2,故B选项错误;C. a6÷a2=a4a3,故C选项错误;D. (a2)3=a6,故D选项正确故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.6、C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图主视图,明确主视图是从物体正面看得到的图形是关键.7、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字8、B【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,解得x=45(尺),故选B【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键9、C【解析】根据等边三角形的性质可得出B=C=60°,由等角的补角相等可得出BAP=CPD,进而即可证出ABPPCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出【详解】ABC为等边三角形,B=C=60°,BC=AB=a,PC=a-xAPD=60°,B=60°,BAP+APB=120°,APB+CPD=120°,BAP=CPD,ABPPCD,,即,y=- x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键10、B【解析】试题分析:由抛物线开口方向得a0,由抛物线的对称轴位置可得b0,由抛物线与y轴的交点位置可得c0,则可对进行判断;根据抛物线与x轴的交点个数得到b24ac0,加上a0,则可对进行判断;利用OA=OC可得到A(c,0),再把A(c,0)代入y=ax2+bx+c得ac2bc+c=0,两边除以c则可对进行判断;设A(x1,0),B(x2,0),则OA=x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a0)的两根,利用根与系数的关系得到x1x2=,于是OAOB=,则可对进行判断解:抛物线开口向下,a0,抛物线的对称轴在y轴的右侧,b0,抛物线与y轴的交点在x轴上方,c0,abc0,所以正确;抛物线与x轴有2个交点,=b24ac0,而a0,0,所以错误;C(0,c),OA=OC,A(c,0),把A(c,0)代入y=ax2+bx+c得ac2bc+c=0,acb+1=0,所以正确;设A(x1,0),B(x2,0),二次函数y=ax2+bx+c(a0)的图象与x轴交于A,B两点,x1和x2是方程ax2+bx+c=0(a0)的两根,x1x2=,OAOB=,所以正确故选B考点:二次函数图象与系数的关系二、填空题(共7小题,每小题3分,满分21分)11、或【解析】由图可知,在OMN中,OMN的度数是一个定值,且OMN不为直角. 故当ONM=90°或MON=90°时,OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当ONM=90°时,则DNBC.过点E作EFBC,垂足为F.(如图)在RtABC中,A=90°,AB=AC,C=45°,BC=20,在RtABC中,DE是ABC的中位线,在RtCFE中,.BM=3,BC=20,FC=5,MF=BC-BM-FC=20-3-5=12.EF=5,MF=12,在RtMFE中,DE是ABC的中位线,BC=20,DEBC,DEM=EMF,即DEO=EMF,在RtODE中,.(2) 当MON=90°时,则DNME.过点E作EFBC,垂足为F.(如图)EF=5,MF=12,在RtMFE中,在RtMFE中,DEO=EMF,DE=10,在RtDOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.12、 【解析】试题解析:连接AE,在Rt三角形ADE中,AE=4,AD=2,DEA=30°,ABCD,EAB=DEA=30°,的长度为:=.考点:弧长的计算.13、【解析】根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积【详解】sinD= AD=11四边形ABCD是菱形AD=CD=11菱形ABCD的面积=11×8=96cm1故答案为:96cm1【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键14、1【解析】作BDAC于点D,在直角ABD中,利用三角函数求得BD的长,然后在直角BCD中,利用三角函数即可求得BC的长【详解】CBA=25°+50°=75°,作BDAC于点D,则CAB=(90°70°)+(90°50°)=20°+40°=60°,ABD=30°,CBD=75°30°=45°,在直角ABD中,BD=ABsinCAB=20×sin60°=20×=10,在直角BCD中,CBD=45°,则BC=BD=10×=1010×2.4=1(海里),故答案是:1【点睛】本题考查了解直角三角形的应用方向角问题,正确求得CBD以及CAB的度数是解决本题的关键15、a(a1)(a + 1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解解答:解:a3-a,=a(a2-1),=a(a+1)(a-1)16、【解析】直接利用完全平方公式分解因式得出答案【详解】解:=,故答案为.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键17、1【解析】根据立方根、绝对值及负整数指数幂等知识点解答即可.【详解】原式= -2 -2+3= -1【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.三、解答题(共7小题,满分69分)18、(1)4,1;(2)见解析;(3)1.1或3.2【解析】(1)当x=2时,PMAB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1(2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;【详解】(1)当x2时,PMAB,此时Q与M重合,BQBM4,当x4时,点P与B重合,此时BQ1故答案为4,1(2)函数图象如图所示:(3)如图,在RtBQM中,Q91°,MBQ61°,BMQ31°,BQBM2,观察图象可知y2时,对应的x的值为1.1或3.2故答案为1.1或3.2【点睛】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.19、(1)(2)详见解析;(3).【解析】(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得OBC周长C的取值范围【详解】经过测量,时,y值为根据题意,画出函数图象如下图:根据图象,可以发现,y的取值范围为:,故答案为.【点睛】本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义20、(1)见解析; (2) a=100,b=0.15; 144°140人【解析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值求得器乐类的频率乘以360°即可用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数【详解】(1)调查的人数较多,范围较大,应当采用随机抽样调查,到六年级每个班随机调查一定数量的同学相对比较全面,丙同学的说法最合理(2)喜欢书画类的有20人,频率为0.20,a=20÷0.20=100,b=15÷100=0.15;喜欢器乐类的频率为:10.250.200.15=0.4,喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;喜欢武术类的人数为:560×0.25=140人【点睛】本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键21、(1)1+3;(2)30°【解析】(1) 根据零指数幂、 绝对值、 二次根式的性质求出每一部分的值, 代入求出即可;(2)根据平行线的性质可得EDC=B=,根据三角形内角和定理即可求解;【详解】解:(1)原式=12+3=1+3;(2)ABC是等边三角形,B=60°,点D,E分别是边BC,AC的中点,DEAB,EDC=B=60°,EFDE,DEF=90°,F=90°EDC=30°【点睛】(1) 主要考查零指数幂、 绝对值、 二次根式的性质;(2)考查平行线的性质和三角形内角和定理.22、(1)见解析;(2)1;:x=0或x=44或4x4;【解析】(1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;如图1,构建腰长为4的等腰直角OMC,和半径为4的M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可【详解】解:(1)如图所示:(2)如图所示:故答案为1如图1,以M为圆心,以4为半径画圆,当M与OB相切时,设切点为C,M与OA交于D,MCOB,AOB=45°,MCO是等腰直角三角形,MC=OC=4, 当M与D重合时,即时,同理可知:点P恰好有三个;如图4,取OM=4,以M为圆心,以OM为半径画圆则M与OB除了O外只有一个交点,此时x=4,即以PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现M1与直线OB有一个交点;当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或或 故答案为x=0或或【点睛】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法23、 (1)详见解析;(2)当x10,x20或当x10,x20时,m=;当x10,x20时或x10,x20时,m=【解析】试题分析:(1)根据判别式0恒成立即可判断方程一定有两个实数根;(2)先讨论x1,x2的正负,再根据根与系数的关系求解试题解析:(1)关于x的方程x2(2m+1)x+2m=0,=(2m+1)28m=(2m1)20恒成立,故方程一定有两个实数根;(2)当x10,x20时,即x1=x2,=(2m1)2=0,解得m=;当x10,x20时或x10,x20时,即x1+x2=0,x1+x2=2m+1=0,解得:m=;当x10,x20时,即x1=x2,=(2m1)2=0,解得m=;综上所述:当x10,x20或当x10,x20时,m=;当x10,x20时或x10,x20时,m=24、(1)12m;(2)【解析】(1)利用即可求解;(2)通过三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解【详解】解:(1)在中,答:教学楼的高度为;(2)设,则,故,解得:,则故【点睛】本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键