河北省唐山市玉田县2023届中考数学模拟精编试卷含解析.doc
-
资源ID:88306472
资源大小:1.19MB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河北省唐山市玉田县2023届中考数学模拟精编试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1下列事件中,属于必然事件的是( )A三角形的外心到三边的距离相等B某射击运动员射击一次,命中靶心C任意画一个三角形,其内角和是 180°D抛一枚硬币,落地后正面朝上2计算(ab2)3÷(ab)2的结果是()Aab4 Bab4 Cab3 Dab33如图,ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4)若反比例函数y在第一象限内的图象与ABC有交点,则k的取值范围是()A1k4B2k8C2k16D8k164已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )A1或5B或3C或1D或55已知直线与直线的交点在第一象限,则的取值范围是( )ABCD6如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()A个B个C个D个7如图,在ABC中,点D在AB边上,DEBC,与边AC交于点E,连结BE,记ADE,BCE的面积分别为S1,S2,()A若2ADAB,则3S12S2B若2ADAB,则3S12S2C若2ADAB,则3S12S2D若2ADAB,则3S12S28在平面直角坐标系中,点,则点P不可能在( )A第一象限B第二象限C第三象限D第四象限9如图,在矩形ABCD中AB,BC1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为()ABCD10已知二次函数yax1+bx+c+1的图象如图所示,顶点为(1,0),下列结论:abc0;b14ac0;a1;ax1+bx+c1的根为x1x11;若点B(,y1)、C(,y1)为函数图象上的两点,则y1y1其中正确的个数是()A1B3C4D5二、填空题(本大题共6个小题,每小题3分,共18分)11某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带_kg的行李12已知x+y=,xy=,则x2y+xy2的值为_.13如图,的半径为,点,都在上,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_(结果保留)14如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的15图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程_.16如图,如果四边形ABCD中,ADBC6,点E、F、G分别是AB、BD、AC的中点,那么EGF面积的最大值为_三、解答题(共8题,共72分)17(8分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使他的作法如下:(1)以点O为端点画射线,(2)在上依次截取,(3)在上截取(4)联结,过点B作,交于点D所以:线段_就是所求的线段x试将结论补完整这位同学作图的依据是_如果,试用向量表示向量18(8分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)19(8分)如图,在O的内接四边形ABCD中,BCD=120°,CA平分BCD(1)求证:ABD是等边三角形;(2)若BD=3,求O的半径20(8分)如图1,已知扇形MON的半径为,MON=90°,点B在弧MN上移动,联结BM,作ODBM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,COM的正切值为y.(1)如图2,当ABOM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当OAC为等腰三角形时,求x的值.21(8分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式求机场大巴与货车相遇地到机场C的路程22(10分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、(1)求反比例函数和一次函数的解析式;(2)请连结,并求出的面积;(3)直接写出当时,的解集23(12分)如图,AB是O的直径,BC交O于点D,E是弧的中点,AE与BC交于点F,C=2EAB求证:AC是O的切线;已知CD=4,CA=6,求AF的长24制作一种产品,需先将材料加热达到60后,再进行操作,设该材料温度为y()从加热开始计算的时间为x(min)据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图)已知在操作加热前的温度为15,加热5分钟后温度达到60分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.3、C【解析】试题解析:由于ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论ABC是直角三角形,当反比例函数经过点A时k最小,经过点C时k最大,k最小=1×2=2,k最大=4×4=1,2k1故选C4、D【解析】由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:若,时,y取得最小值4;若-1h3时,当x=h时,y取得最小值为0,不是4;若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可【详解】解:当xh时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,若,当时,y取得最小值4,可得:4,解得或(舍去);若-1h3时,当x=h时,y取得最小值为0,不是4,此种情况不符合题意,舍去;若-1x3h,当x=3时,y取得最小值4,可得:,解得:h=5或h=1(舍)综上所述,h的值为-3或5,故选:D【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键5、C【解析】根据题意画出图形,利用数形结合,即可得出答案【详解】根据题意,画出图形,如图:当时,两条直线无交点;当时,两条直线的交点在第一象限故选:C【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键6、D【解析】求出不等式组的解集,根据已知求出12、34,求出2a4、9b12,即可得出答案【详解】解不等式2xa0,得:x,解不等式3xb0,得:x,不等式组的整数解仅有x2、x3,则12、34,解得:2a4、9b12,则a3时,b9、10、11;当a4时,b9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值7、D【解析】根据题意判定ADEABC,由相似三角形的面积之比等于相似比的平方解答【详解】如图,在ABC中,DEBC,ADEABC,若1ADAB,即时,此时3S1S1+SBDE,而S1+SBDE1S1但是不能确定3S1与1S1的大小,故选项A不符合题意,选项B不符合题意若1ADAB,即时,此时3S1S1+SBDE1S1,故选项C不符合题意,选项D符合题意故选D【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形8、B【解析】根据坐标平面内点的坐标特征逐项分析即可.【详解】A. 若点在第一象限,则有: ,解之得m>1,点P可能在第一象限;B. 若点在第二象限,则有: ,解之得不等式组无解,点P不可能在第二象限;C. 若点在第三象限 ,则有: ,解之得m<1,点P可能在第三象限;D. 若点在第四象限,则有:,解之得0<m<1,点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.9、A【解析】本题首先利用A点恰好落在边CD上,可以求出A´CBC´1,又因为A´B可以得出A´BC为等腰直角三角形,即可以得出ABA´、DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´【详解】先连接BD,首先求得正方形ABCD的面积为,由分析可以求出ABA´DBD´45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´面积ABCD面积A´BC扇形面积ABA´;面积DA´D´扇形面积BDD´面积DBA´面积BA´D´,阴影部分面积面积DA´D´+面积ADA´【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.10、D【解析】根据二次函数的图象与性质即可求出答案【详解】解:由抛物线的对称轴可知:,由抛物线与轴的交点可知:,故正确;抛物线与轴只有一个交点,故正确;令,故正确;由图象可知:令,即的解为,的根为,故正确;,故正确;故选D【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,解得, ,则y=30x-1当y=0时,30x-1=0,解得:x=2故答案为:2【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键12、3 【解析】分析:因式分解,把已知整体代入求解.详解:x2y+xy2xy(x+y)=3.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.13、【解析】根据题意先利用旋转的性质得到BOD=120°,则AOD=150°,然后根据弧长公式计算即可.【详解】解:扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,BOD=120°,AOD=AOB+BOD=30°+120°=150°,的长=故答案为:【点睛】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.14、16,3n+1【解析】观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可【详解】由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+3×2,第5个图案基础图形的个数为4+3(51)=16,第n个图案基础图形的个数为4+3(n1)=3n+1.故答案为16,3n+1.【点睛】本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.15、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位【解析】变换图形2,可先旋转,然后平移与图2拼成一个矩形【详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等16、4.1【解析】取CD的值中点M,连接GM,FM首先证明四边形EFMG是菱形,推出当EFEG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论【详解】解:取CD的值中点M,连接GM,FMAGCG,AEEB,GE是ABC的中位线EGBC,同理可证:FMBC,EFGMAD,ADBC6,EGEFFMMG3,四边形EFMG是菱形,当EFEG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,EGF的面积的最大值为S四边形EFMG4.1,故答案为4.1【点睛】本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键三、解答题(共8题,共72分)17、CD;平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;.【解析】根据作图依据平行线分线段成比例定理求解可得;根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;先证得,即,从而知【详解】,OA:AB=OC:CD,线段就是所求的线段x,故答案为:这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;、,且,即,【点睛】本题主要考查作图复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算18、()点P的坐标为(,1)()(0t11)()点P的坐标为(,1)或(,1)【解析】()根据题意得,OBP=90°,OB=1,在RtOBP中,由BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值:【详解】()根据题意,OBP=90°,OB=1在RtOBP中,由BOP=30°,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)点P的坐标为(,1)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCPOPB=OPB,QPC=QPCOPB+OPB+QPC+QPC=180°,OPB+QPC=90°BOP+OPB=90°,BOP=CPQ又OBP=C=90°,OBPPCQ由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11t,CQ=1m(0t11)()点P的坐标为(,1)或(,1)过点P作PEOA于E,PEA=QAC=90°PCE+EPC=90°PCE+QCA=90°,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,AQ=m,CQ=CQ=1m,即,即将代入,并化简,得解得:点P的坐标为(,1)或(,1)19、(1)详见解析;(2).【解析】(1)因为AC平分BCD,BCD120°,根据角平分线的定义得:ACDACB60°,根据同弧所对的圆周角相等,得ACDABD,ACBADB,ABDADB60°.根据三个角是60°的三角形是等边三角形得ABD是等边三角形.(2)作直径DE,连结BE,由于ABD是等边三角形,则BAD60°,由同弧所对的圆周角相等,得BEDBAD60°.根据直径所对的圆周角是直角得,EBD90°,则EDB30°,进而得到DE2BE.设EBx,则ED2x,根据勾股定理列方程求解即可.【详解】解:(1)BCD=120°,CA平分BCD,ACD=ACB=60°,由圆周角定理得,ADB=ACB=60°,ABD=ACD=60°,ABD是等边三角形;(2)连接OB、OD,作OHBD于H,则DH=BD=,BOD=2BAD=120°,DOH=60°,在RtODH中,OD=,O的半径为【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.20、(1)证明见解析;(2) .();(3) .【解析】分析:(1)先判断出ABM=DOM,进而判断出OACBAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论详解:(1)ODBM,ABOM,ODM=BAM=90°ABM+M=DOM+M,ABM=DOMOAC=BAM,OC=BM,OACBAM, AC=AM(2)如图2,过点D作DEAB,交OM于点EOB=OM,ODBM,BD=DMDEAB,AE=EMOM=,AE=DEAB, ()(3)(i) 当OA=OC时在RtODM中,解得,或(舍)(ii)当AO=AC时,则AOC=ACOACOCOB,COB=AOC,ACOAOC,此种情况不存在()当CO=CA时,则COA=CAO=CAOM,M=90°,90°,45°,BOA=290°BOA90°,此种情况不存在即:当OAC为等腰三角形时,x的值为点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键21、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=80x+60(0x);(3)机场大巴与货车相遇地到机场C的路程为km【解析】(1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;(3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程【详解】解:(1)60+20=80(km),(h)连接A. B两市公路的路程为80km,货车由B市到达A市所需时间为h(2)设所求函数表达式为y=kx+b(k0),将点(0,60)、代入y=kx+b,得: 解得: 机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为(3)设线段ED对应的函数表达式为y=mx+n(m0)将点代入y=mx+n,得: 解得: 线段ED对应的函数表达式为解方程组得 机场大巴与货车相遇地到机场C的路程为km【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心22、(1),;(2)4;(3)【解析】(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;(2)依据OB=2,点A的横坐标为-4,即可得到AOB的面积为:2×4×=4;(3)依据数形结合思想,可得当x1时,k1x+b1的解集为:-4x1【详解】解:(1)如图,连接,C与轴,轴相切于点D,且半径为,四边形是正方形,点,把点代入反比例函数中,解得:,反比例函数解析式为:,点在反比例函数上,把代入中,可得,把点和分别代入一次函数中,得出:,解得:,一次函数的表达式为:;(2)如图,连接,点的横坐标为,的面积为:;(3)由,根据图象可知:当时,的解集为:【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标23、(1)证明见解析(2)2【解析】(1)连结AD,如图,根据圆周角定理,由E是的中点得到由于则,再利用圆周角定理得到则所以于是根据切线的判定定理得到AC是O的切线;先求出的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD,如图,E是的中点, AB是O的直径, 即 AC是O的切线;(2) ,【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.24、(1);(2)20分钟.【解析】(1)材料加热时,设y=ax+15(a0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0x5)停止加热时,设y=(k0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟答:从开始加热到停止操作,共经历了20分钟