河北省保定市雄县2023年中考数学考试模拟冲刺卷含解析.doc
-
资源ID:88306478
资源大小:592.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河北省保定市雄县2023年中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,在平面直角坐标系xOy中,由绕点P旋转得到,则点P的坐标为( )A(0, 1)B(1, -1)C(0, -1)D(1, 0)2如图,在RtABC中,ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则ACD的周长为()A13B17C18D253下列判断正确的是()A任意掷一枚质地均匀的硬币10次,一定有5次正面向上B天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C“篮球队员在罚球线上投篮一次,投中”为随机事件D“a是实数,|a|0”是不可能事件4下列运算正确的是()A(a2)3=a5B(a-b)2=a2-b2C3=3D=-35如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知BDC=62°,则DFE的度数为()A31°B28°C62°D56°6如图,四边形ABCD内接于O,ADBC,BD平分ABC,A130°,则BDC的度数为()A100°B105°C110°D115°7如图是由5个相同的正方体搭成的几何体,其左视图是( )ABCD8若2mn6,则代数式m-n+1的值为()A1B2C3D49点P(4,3)关于原点对称的点所在的象限是()A第四象限B第三象限C第二象限D第一象限10在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11抛物线 y3x26x+a 与 x 轴只有一个公共点,则 a 的值为_12如图,在RtABC中,ACB=90°,AC=4,BC=3,点D为AB的中点,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,则DB长为_13已知x=2是关于x的一元二次方程kx2+(k22)x+2k+4=0的一个根,则k的值为_14已知双曲线经过点(1,2),那么k的值等于_.15如图,BC6,点A为平面上一动点,且BAC60°,点O为ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形ABD与ACE,连接BE、CD交于点P,则OP的最小值是_16分解因式:2x34x2+2x_三、解答题(共8题,共72分)17(8分)解不等式组,并将它的解集在数轴上表示出来18(8分)如图,已知AB是O上的点,C是O上的点,点D在AB的延长线上,BCD=BAC求证:CD是O的切线;若D=30°,BD=2,求图中阴影部分的面积19(8分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间(温馨提示:sin53°0.8,cos53°0.6)20(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30°. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60°,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长21(8分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?22(10分)如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,4)请在图中,画出ABC向左平移6个单位长度后得到的A1B1C1; 以点O为位似中心,将ABC缩小为原来的,得到A2B2C2,请在图中y轴右侧,画出A2B2C2,并求出A2C2B2的正弦值23(12分)如图,ABC和BEC均为等腰直角三角形,且ACBBEC90°,AC4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE1,求PBD的面积24旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题已知,ABC中,ABAC,BAC,点D、E在边BC上,且DAE(1)如图1,当60°时,将AEC绕点A顺时针旋转60°到AFB的位置,连接DF,求DAF的度数;求证:ADEADF;(2)如图2,当90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当120°,BD4,CE5时,请直接写出DE的长为 参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC、AA的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化旋转.2、C【解析】在RtABC中,ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在RtABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.3、C【解析】直接利用概率的意义以及随机事件的定义分别分析得出答案【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|0”是必然事件,故此选项错误故选C【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键4、D【解析】试题分析:A、原式=a6,错误;B、原式=a22ab+b2,错误;C、原式不能合并,错误;D、原式=3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式5、D【解析】先利用互余计算出FDB=28°,再根据平行线的性质得CBD=FDB=28°,接着根据折叠的性质得FBD=CBD=28°,然后利用三角形外角性质计算DFE的度数【详解】解:四边形ABCD为矩形,ADBC,ADC=90°,FDB=90°-BDC=90°-62°=28°,ADBC,CBD=FDB=28°,矩形ABCD沿对角线BD折叠,FBD=CBD=28°,DFE=FBD+FDB=28°+28°=56°故选D【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等6、B【解析】根据圆内接四边形的性质得出C的度数,进而利用平行线的性质得出ABC的度数,利用角平分线的定义和三角形内角和解答即可【详解】四边形ABCD内接于O,A=130°,C=180°-130°=50°,ADBC,ABC=180°-A=50°,BD平分ABC,DBC=25°,BDC=180°-25°-50°=105°,故选:B【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出C的度数7、A【解析】根据三视图的定义即可判断【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形故选A【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型8、D【解析】先对m-n+1变形得到(2mn)+1,再将2mn6整体代入进行计算,即可得到答案.【详解】mn+1(2mn)+1当2mn6时,原式×6+13+14,故选:D【点睛】本题考查代数式,解题的关键是掌握整体代入法.9、C【解析】由题意得点P的坐标为(4,3),根据象限内点的符号特点可得点P1的所在象限【详解】设P(4,3)关于原点的对称点是点P1,点P1的坐标为(4,3),点P1在第二象限故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(,+)的点在第二象限10、D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-10可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1故选D【点睛】本题考查学生对计算程序及函数性质的理解根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解析】根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解【详解】抛物线y=3x26x+a与x轴只有一个公共点,判别式=36-12a=0,解得:a=3,故答案为3【点睛】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果0,则抛物线与x轴有两个不同的交点;如果=0,与x轴有一个交点;如果0,与x轴无交点.12、【解析】试题分析:解:在RtABC中,ACB=90°,AC=4,BC=3,AB=5,点D为AB的中点,CD=AD=BD=AB=2.5,过D作DEBC,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,CD=AD=AD,DE=1.5,AE=CE=2,BC=3,BE=1,BD=,故答案为考点:旋转的性质13、1【解析】【分析】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,整理得k2+1k=0,解得k1=0,k2=1,因为k0,所以k的值为1故答案为:1【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解14、1【解析】分析:根据点在曲线上点的坐标满足方程的关系,将点(1,2)代入,得:,解得:k115、 【解析】试题分析:如图,BAD=CAE=90°,DAC=BAE,在DAC和BAE中,AD=AB,DAC=BAE,AC=AE,DACBAE(SAS),ADC=ABE,PDB+PBD=90°,DPB=90°,点P在以BC为直径的圆上,外心为O,BAC=60°,BOC=120°,又BC=6,OH=,所以OP的最小值是故答案为考点:1三角形的外接圆与外心;2全等三角形的判定与性质16、2x(x-1)2【解析】2x34x2+2x= 三、解答题(共8题,共72分)17、x1,解集表示在数轴上见解析【解析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集【详解】去分母,得:3x2(x1)3,去括号,得:3x2x+23,移项,得:3x2x32,合并同类项,得:x1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集18、(1)证明见解析;(2)阴影部分面积为【解析】【分析】(1)连接OC,易证BCD=OCA,由于AB是直径,所以ACB=90°,所以OCA+OCB=BCD+OCB=90°,CD是O的切线;(2)设O的半径为r,AB=2r,由于D=30°,OCD=90°,所以可求出r=2,AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,OA=OC,BAC=OCA,BCD=BAC,BCD=OCA,AB是直径,ACB=90°,OCA+OCB=BCD+OCB=90°OCD=90°OC是半径,CD是O的切线(2)设O的半径为r,AB=2r,D=30°,OCD=90°,OD=2r,COB=60°r+2=2r,r=2,AOC=120°BC=2,由勾股定理可知:AC=2,易求SAOC=×2×1=S扇形OAC=,阴影部分面积为.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.19、小时【解析】过点C作CDAB交AB延长线于D先解RtACD得出CD=AC=40海里,再解RtCBD中,得出BC=50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间【详解】解:如图,过点C作CDAB交AB延长线于D在RtACD中,ADC=90°,CAD=30°,AC=80海里,CD=AC=40海里在RtCBD中,CDB=90°,CBD=90°37°=53°,BC=50(海里),海警船到大事故船C处所需的时间大约为:50÷40=(小时)考点:解直角三角形的应用-方向角问题20、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90°,B=DCE=30°,DAC=CDE=20°ADC是等边三角形DCA=20°DCA=CDE=20°DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90°,B =30°AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90°,DCM+BCN=180°-90°=90°,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20°,F1DBE,F1F1D=ABC=20°,BF1=DF1,F1BD=ABC=30°,F1DB=90°,F1DF1=ABC=20°,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20°,点D是角平分线上一点,DBC=DCB=×20°=30°,BG=BC=,BD=3CDF1=180°-BCD=180°-30°=150°,CDF1=320°-150°-20°=150°,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20°,点D是角平分线上一点,DEAB,DBC=BDE=ABD=×20°=30°,又BD=3,BE=×3÷cos30°=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或221、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程【解析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷=90(天)设乙队单独施工需要x天完成该项工程,则,去分母,得x+1=2x解得x=1经检验x=1是原方程的解答:乙队单独施工需要1天完成(2)设乙队施工y天完成该项工程,则1-解得y2答:乙队至少施工l8天才能完成该项工程22、(1)见解析(2)【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案试题解析:(1)如图所示:A1B1C1,即为所求;(2)如图所示:A2B2C2,即为所求,由图形可知,A2C2B2=ACB,过点A作ADBC交BC的延长线于点D,由A(2,2),C(4,4),B(4,0),易得D(4,2),故AD=2,CD=6,AC=,sinACB=,即sinA2C2B2=考点:作图位似变换;作图平移变换;解直角三角形23、 (1)见解析;(2) ACBD,理由见解析;(3)【解析】(1)直接利用相似三角形的判定方法得出BCEDCP,进而得出答案;(2)首先得出PCEDCB,进而求出ACB=CBD,即可得出AC与BD的位置关系;(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到PBD的面积【详解】(1)证明:BCE和CDP均为等腰直角三角形,ECBPCD45°,CEBCPD90°,BCEDCP,;(2)解:结论:ACBD,理由:PCE+ECDBCD+ECD45°,PCEBCD,又,PCEDCB,CBDCEP90°,ACB90°,ACBCBD,ACBD;(3)解:如图所示:作PMBD于M,AC4,ABC和BEC均为等腰直角三角形,BECE4,PCEDCB,即,BD,PBMCBDCBP45°,BPBE+PE4+15,PM5sin45°PBD的面积SBDPM××【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.24、(1)30°见解析(2)BD2+CE2DE2(3)【解析】(1)利用旋转的性质得出FAB=CAE,再用角的和即可得出结论;利用SAS判断出ADEADF,即可得出结论;(2)先判断出BF=CE,ABF=ACB,再判断出DBF=90°,即可得出结论;(3)同(2)的方法判断出DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论【详解】解:(1)由旋转得,FABCAE,BAD+CAEBACDAE60°30°30°,DAFBAD+BAFBAD+CAE30°;由旋转知,AFAE,BAFCAE,BAF+BADCAE+BADBACDAEDAE,在ADE和ADF中,ADEADF(SAS);(2)BD2+CE2DE2,理由:如图2,将AEC绕点A顺时针旋转90°到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,ABAC,BAC90°,ABCACB45°,DBFABC+ABFABC+ACB90°,根据勾股定理得,BD2+BF2DF2,即:BD2+CE2DE2;(3)如图3,将AEC绕点A顺时针旋转90°到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,BFCE5,ABAC,BAC90°,ABCACB30°,DBFABC+ABFABC+ACB60°,过点F作FMBC于M,在RtBMF中,BFM90°DBF30°,BF5,BD4,DMBDBM,根据勾股定理得, ,DEDF,故答案为【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键