河北省唐山市路南区2022-2023学年中考数学模试卷含解析.doc
-
资源ID:88306538
资源大小:800KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河北省唐山市路南区2022-2023学年中考数学模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列判断错误的是( )A对角线相等的四边形是矩形B对角线相互垂直平分的四边形是菱形C对角线相互垂直且相等的平行四边形是正方形D对角线相互平分的四边形是平行四边形2如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )和黑子A37B42C73D1213如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()ABCD4二次函数y=-x2-4x+5的最大值是( )A-7B5C0D95下列计算正确的是()A(a+2)(a2)a22B(a+1)(a2)a2+a2C(a+b)2a2+b2D(ab)2a22ab+b26如图:A、B、C、D四点在一条直线上,若ABCD,下列各式表示线段AC错误的是( )AACADCDBACAB+BCCACBDABDACADAB7如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )AAB=ADBAC平分BCDCAB=BDDBECDEC8若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( )A3B6C9D369下列运算正确的是()Ax3+x3=2x6Bx6÷x2=x3C(3x3)2=2x6Dx2x3=x110如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是ABCD311在数轴上表示不等式组的解集,正确的是()ABCD12在RtABC中,C=90°,AC=1,BC=3,则A的正切值为()A3BCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若点M(1,m)和点N(4,n)在直线y=x+b上,则m_n(填、或=)14同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 15如图,在ABC中,DEBC,则_165月份,甲、乙两个工厂用水量共为200吨进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为_17如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_cm18同时掷两粒骰子,都是六点向上的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取 名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率20(6分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的问该兴趣小组男生、女生各有多少人?21(6分)如图1,在四边形ABCD中,AB=ADB+ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,EAF=BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1 图2 图3(1)思路梳理将ABE绕点A逆时针旋转至ADG,使AB与AD重合.由B+ADC=180°,得FDG=180°,即点F,D,G三点共线. 易证AFG ,故EF,BE,DF之间的数量关系为 ;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,EAF=BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在ABC中,BAC=90°,AB=AC,点D,E均在边BC上,且DAE=45°. 若BD=1,EC=2,则DE的长为 .22(8分)如图,在等腰ABC中,ABAC,以AB为直径的O与BC相交于点D且BD2AD,过点D作DEAC交BA延长线于点E,垂足为点F(1)求tanADF的值;(2)证明:DE是O的切线;(3)若O的半径R5,求EF的长23(8分)如图,点是线段的中点,求证:24(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图和图.请根据相关信息,解答下列问题:()图中的值为 ;()求统计的这组数据的平均数、众数和中位数;() 根据样本数据,估计这2500只鸡中,质量为的约有多少只?25(10分)已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果这个方程有两个整数根,求出它的根26(12分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长27(12分)如图所示,AB是O的一条弦,DB切O于点B,过点D作DCOA于点C,DC与AB相交于点E(1)求证:DB=DE;(2)若BDE=70°,求AOB的大小参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大2、C【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个故选C点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况3、D【解析】分析:根据相似三角形的性质进行解答即可详解:在平行四边形ABCD中,AECD, EAFCDF, AFBC,EAFEBC, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.4、D【解析】直接利用配方法得出二次函数的顶点式进而得出答案【详解】y=x24x+5=(x+2)2+9,即二次函数y=x24x+5的最大值是9,故选D【点睛】此题主要考查了二次函数的最值,正确配方是解题关键5、D【解析】A、原式=a24,不符合题意;B、原式=a2a2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a22ab+b2,符合题意,故选D6、C【解析】根据线段上的等量关系逐一判断即可.【详解】A、AD-CD=AC,此选项表示正确;B、AB+BC=AC,此选项表示正确;C、AB=CD,BD-AB=BD-CD,此选项表示不正确;D、AB=CD,AD-AB=AD-CD=AC,此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.7、C【解析】解:AC垂直平分BD,AB=AD,BC=CD,AC平分BCD,平分BCD,BE=DEBCE=DCE在RtBCE和RtDCE中,BE=DE,BC=DC,RtBCERtDCE(HL)选项ABD都一定成立故选C8、C【解析】设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-x-(m-3)2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值【详解】设抛物线解析式为y=-(x-m)(x-m+6),y=-x2-2(m-3)x+(m-3)2-1=-x-(m-3)2+1,抛物线的顶点坐标为(m-3,1),该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,即n=1故选C【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质9、D【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(3a3)29a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2x3=x1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.10、B【解析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键11、C【解析】解不等式组,再将解集在数轴上正确表示出来即可【详解】解1x0得x1,解2x40得x2,所以不等式的解集为1x2,故选C.【点睛】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.12、A【解析】【分析】根据锐角三角函数的定义求出即可【详解】在RtABC中,C=90°,AC=1,BC=3,A的正切值为=3,故选A【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据一次函数的性质,k<0时,y随x的增大而减小.【详解】因为k=<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n.故答案为:>【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数的性质.14、【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=故答案为考点:列表法与树状图法15、【解析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:DEBC,,由平行条件易证ADEABC,SADE:SABC=1:9,=.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.16、 【解析】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据甲、乙两厂5月份用水量与6月份用水量列出关于x、y的方程组即可.【详解】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:,故答案为:【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键.17、2【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度圆柱底面的周长为6cm,圆柱高为2cm,AB2cm,BCBC3cm,AC222+3213,ACcm,这圈金属丝的周长最小为2AC2cm故答案为2【点睛】本题考查了平面展开最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决18、【解析】同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.【详解】解:都是六点向上的概率是.【点睛】本题考查了概率公式的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)1;(2)详见解析;(3)750;(4)【解析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人)答:共抽取1名学生进行问卷调查;故答案为1(2)足球的人数为:160302436=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°如图所示:(3)3000×0.25=750(人)答:全校学生喜欢足球运动的人数为750人(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确20、男生有12人,女生有21人.【解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×=男生的人数 ,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:,解得:答:该兴趣小组男生有12人,女生有21人【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.21、(1)AFE. EF=BE+DF.(2)BF=DF-BE,理由见解析;(3) 【解析】试题分析:(1)先根据旋转得:计算 即点共线,再根据SAS证明AFEAFG,得EF=FG,可得结论EF=DF+DG=DF+AE;(2)如图2,同理作辅助线:把ABE绕点A逆时针旋转至ADG,证明EAFGAF,得EF=FG,所以EF=DFDG=DFBE;(3)如图3,同理作辅助线:把ABD绕点A逆时针旋转至ACG,证明AEDAEG,得,先由勾股定理求的长,从而得结论试题解析:(1)思路梳理:如图1,把ABE绕点A逆时针旋转至ADG,可使AB与AD重合,即AB=AD,由旋转得:ADG=A=,BE=DG,DAG=BAE,AE=AG,FDG=ADF+ADG=+=,即点F. D. G共线,四边形ABCD为矩形,BAD=,EAF=, 在AFE和AFG中, AFEAFG(SAS), EF=FG,EF=DF+DG=DF+AE;故答案为:AFE,EF=DF+AE;(2)类比引申:如图2,EF=DFBE,理由是:把ABE绕点A逆时针旋转至ADG,可使AB与AD重合,则G在DC上,由旋转得:BE=DG,DAG=BAE,AE=AG,BAD=,BAE+BAG=,EAF=,FAG=,EAF=FAG=,在EAF和GAF中, EAFGAF(SAS), EF=FG,EF=DFDG=DFBE;(3)联想拓展:如图3,把ABD绕点A逆时针旋转至ACG,可使AB与AC重合,连接EG,由旋转得:AD=AG,BAD=CAG,BD=CG,BAC=,AB=AC,B=ACB=,ACG=B=,BCG=ACB+ACG=+=,EC=2,CG=BD=1,由勾股定理得: BAD=CAG,BAC=,DAG=,BAD+EAC=,CAG+EAC=EAG,DAE=,DAE=EAG=,AE=AE,AEDAEG, 22、(1);(2)见解析;(3)【解析】(1) AB是O的直径,AB=AC,可得ADB=90°,ADF=B,可求得tanADF的值;(2)连接OD,由已知条件证明ACOD,又DEAC,可得DE是O的切线;(3)由AFOD,可得AFEODE,可得后求得EF的长【详解】解:(1)AB是O的直径,ADB=90°,AB=AC,BAD=CAD,DEAC,AFD=90°,ADF=B,tanADF=tanB=;(2)连接OD,OD=OA,ODA=OAD,OAD=CAD,CAD=ODA,ACOD,DEAC,ODDE,DE是O的切线;(3)设AD=x,则BD=2x,AB=x=10,x=2,AD=2,同理得:AF=2,DF=4,AFOD,AFEODE,=,EF=【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视23、详见解析【解析】利用 证明 即可解决问题【详解】证明:是线段的中点在和中,【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型24、()28. ()平均数是1.52. 众数为1.8. 中位数为1.5. ()200只.【解析】分析:()用整体1减去所有已知的百分比即可求出m的值;()根据众数、中位数、加权平均数的定义计算即可;()用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:()m%=1-22%-10%-8%-32%=28%.故m=28;()观察条形统计图,这组数据的平均数是1.52.在这组数据中,1.8出现了16次,出现的次数最多,这组数据的众数为1.8.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,这组数据的中位数为1.5.()在所抽取的样本中,质量为的数量占.由样本数据,估计这2500只鸡中,质量为的数量约占.有.这2500只鸡中,质量为的约有200只点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数25、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)24×3(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法26、(1)详见解析;(2).【解析】四边形ABCD是矩形,B=C=90°,AB=CD,BC=AD,ADBC,EAD=AFB,DEAF,AED=90°,在ADE和FAB中,ADEFAB(AAS),AE=BF=1BF=FC=1BC=AD=2故在RtADE中,ADE=30°,DE=,的长=.27、(1)证明见解析;(2)110°【解析】分析:(1)欲证明DB=DE,只要证明BED=ABD即可;(2)因为OAB是等腰三角形,属于只要求出OBA即可解决问题;详解:(1)证明:DCOA,OAB+CEA=90°,BD为切线,OBBD,OBA+ABD=90°,OA=OB,OAB=OBA,CEA=ABD,CEA=BED,BED=ABD,DE=DB(2)DE=DB,BDE=70°,BED=ABD=55°,BD为切线,OBBD,OBA=35°,OA=OB,OBA=180°-2×35°=110°点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型