江苏省海安市南莫中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc
2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则下列关系正确的是( )ABCD2若复数z满足,则复数z在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限3已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D254已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD5已知向量,且,则m=( )A8B6C6D86已知函数是定义在上的奇函数,函数满足,且时,则( )A2BC1D7某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米8已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是( )ABCD9集合,则=( )ABCD10已知函数是奇函数,则的值为( )A10B9C7D111函数在上单调递增,则实数的取值范围是( )ABCD12若非零实数、满足,则下列式子一定正确的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13 “今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺”则每天增加的数量为_尺,设该女子一个月中第n天所织布的尺数为,则_14某中学举行了一次消防知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,记图中从左到右依次为第一、第二、第三、第四、第五组,已知第二组的频数是80,则成绩在区间的学生人数是_15已知函数图象上一点处的切线方程为,则_16一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合以下记为的元素个数(1)给出所有的元素均小于的好集合(给出结论即可)(2)求出所有满足的好集合(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍18(12分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为,求在区间上的最大值19(12分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.20(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.21(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路, 以所在的直线分别为轴,轴, 建立平面直角坐标系, 如图所示, 山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,千米,千米,求应开凿的隧道的长度.22(10分)在中,、的对应边分别为、,已知,.(1)求;(2)设为中点,求的长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,所以,综上可得.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题2、A【解析】化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.3、D【解析】由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,中最大,最小,又,为三角形的三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.4、A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.5、D【解析】由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案【详解】,又,3×4+(2)×(m2)0,解得m1故选D【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题6、D【解析】说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值【详解】由知函数的周期为4,又是奇函数,又,故选:D【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础7、B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.8、D【解析】根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【详解】对于A,当,时,则平面与平面可能相交,故不能作为的充分条件,故A错误;对于B,当,时,则,故不能作为的充分条件,故B错误;对于C,当,时,则平面与平面相交,故不能作为的充分条件,故C错误;对于D,当,则一定能得到,故D正确.故选:D.【点睛】本题考查了面面垂直的判断问题,属于基础题.9、C【解析】先化简集合A,B,结合并集计算方法,求解,即可【详解】解得集合,所以,故选C【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小10、B【解析】根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.11、B【解析】对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【详解】当时,函数在上单调递减,所以,的递增区间是,所以,即.故选:B.【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题.12、C【解析】令,则,将指数式化成对数式得、后,然后取绝对值作差比较可得【详解】令,则,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题二、填空题:本题共4小题,每小题5分,共20分。13、 52 【解析】设从第2天开始,每天比前一天多织尺布,由等差数列前项和公式求出,由此利用等差数列通项公式能求出.【详解】设从第2天开始,每天比前一天多织d尺布,则,解得,即每天增加的数量为,故答案为,52.【点睛】本题主要考查等差数列的通项公式、等差数列的求和公式,意在考查利用所学知识解决问题的能力,属于中档题.14、30【解析】根据频率直方图中数据先计算样本容量,再计算成绩在80100分的频率,继而得解.【详解】根据直方图知第二组的频率是,则样本容量是,又成绩在80100分的频率是,则成绩在区间的学生人数是故答案为:30【点睛】本题考查了频率分布直方图的应用,考查了学生综合分析,数据处理,数形运算的能力,属于基础题.15、1【解析】求出导函数,由切线方程得切线斜率和切点坐标,从而可求得【详解】由题意,函数图象在点处的切线方程为,解得,故答案为:1【点睛】本题考查导数的几何意义,求出导函数是解题基础,16、【解析】利用相互独立事件概率的乘法公式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是次传播是相互独立的,故为故答案为:【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2);证明见解析(3)证明见解析【解析】(1)根据好集合的定义列举即可得到结果;(2)设,其中,由知;由可知或,分别讨论两种情况可的结果;(3)记,则,设,由归纳推理可求得,从而得到,从而得到,可知存在元素满足题意.【详解】(1),(2)设,其中,则由题意:,故,即,考虑,可知:,或,若,则考虑,则,但此时,不满足题意;若,此时,满足题意,其中为相异正整数(3)记,则,首先,设,其中,分别考虑和其他任一元素,由题意可得:也在中,而,对于,考虑,其和大于,故其差,特别的,由,且,以此类推:,此时,故中存在元素,使得中所有元素均为的整数倍【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.18、(1)单调递增区间是,单调递减区间是和;(2)最大值是【解析】(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(2)由(1)中的结论知,函数的极小值为,进而得出,解出、的值,然后利用导数可求得函数在区间上的最大值.【详解】(1),令,因为,所以的零点就是的零点,且与符号相同又因为,所以当时,即;当或时,即.所以,函数的单调递增区间是,单调递减区间是和; (2)由(1)知,是的极小值点,所以有,解得, ,所以因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是【点睛】本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.19、(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:() 平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面()如图,以点为原点, 分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量设为面的法向量,则,即,取,则依题意,则于是设直线与平面所成角为,则即直线与平面所成角的正弦值为20、(1)见解析(2)【解析】(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,为常数列,且,【点睛】本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.21、(1)当时,公路的长度最短为千米;(2)(千米).【解析】(1)设切点的坐标为,利用导数的几何意义求出切线的方程为,根据两点间距离得出,构造函数,利用导数求出单调性,从而得出极值和最值,即可得出结果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根据勾股定理即可求出的长度.【详解】(1)由题可知,设点的坐标为,又,则直线的方程为,由此得直线与坐标轴交点为:,则,故,设,则.令,解得=10.当时,是减函数;当时,是增函数.所以当时,函数有极小值,也是最小值, 所以, 此时.故当时,公路的长度最短,最短长度为千米.(2) 在中,,所以, 所以,根据正弦定理,,又, 所以.在中,由勾股定理可得,即,解得,(千米).【点睛】本题考查利用导数解决实际的最值问题,涉及构造函数法以及利用导数研究函数单调性和极值,还考查正余弦定理的实际应用,还考查解题分析能力和计算能力.22、(1);(2).【解析】(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解【详解】解:(1),且,由正弦定理,锐角,(2),在中,由余弦定理得【点睛】本题主要考查了正弦定理和余弦定理的运用考查了学生对三角函数基础知识的综合运用