浙江地区重点达标名校2023年中考二模数学试题含解析.doc
-
资源ID:88306643
资源大小:675.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙江地区重点达标名校2023年中考二模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,正六边形ABCDEF内接于O,半径为4,则这个正六边形的边心距OM的长为()A2B2CD42安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是()A3804.2×103B380.42×104C3.8042×106D3.8042×1053某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图这5个正确答题数所组成的一组数据的中位数和众数分别是( )A10,15B13,15C13,20D15,154若代数式的值为零,则实数x的值为()Ax0Bx0Cx3Dx35下列说法正确的是( )A“买一张电影票,座位号为偶数”是必然事件B若甲、乙两组数据的方差分别为S甲20.3,S乙20.1,则甲组数据比乙组数据稳定C一组数据2,4,5,5,3,6的众数是5D一组数据2,4,5,5,3,6的平均数是56规定:如果关于x的一元二次方程ax2+bx+c=0(a0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论: 方程x2+2x8=0是倍根方程;若关于x的方程x2+ax+2=0是倍根方程,则a=±3;若关于x的方程ax26ax+c=0(a0)是倍根方程,则抛物线y=ax26ax+c与x轴的公共点的坐标是(2,0)和(4,0);若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程上述结论中正确的有( )ABCD7如图,若ABCD,CDEF,那么BCE( )A12B21C180°12D180°218如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()ABC9D9在平面直角坐标系中,把直线yx向左平移一个单位长度后,所得直线的解析式为()Ayx1 Byx1 Cyx Dyx210下列计算正确的是()A3a2a1Ba2+a5a7C(ab)3ab3Da2a4a6二、填空题(共7小题,每小题3分,满分21分)11计算:(3)02-1=_12下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_13如图,已知圆锥的底面O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为 14有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 15在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A或B或C)16数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计)若要求折出的盒子体积最大,则正方体的棱长等于_17已知抛物线yx2mx2m,在自变量x的值满足1x2的情况下若对应的函数值y的最大值为6,则m的值为_.三、解答题(共7小题,满分69分)18(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示甲的速度是_米/分钟;当20t30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?19(5分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E求证:AFECDF;若AB=4,BC=8,求图中阴影部分的面积20(8分)某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案21(10分)如图,已知AB是圆O的直径,F是圆O上一点,BAF的平分线交O于点E,交O的切线BC于点C,过点E作EDAF,交AF的延长线于点D求证:DE是O的切线;若DE3,CE2. 求的值;若点G为AE上一点,求OG+EG最小值22(10分)计算1423(12分)如图,AB、AD是O的弦,ABC是等腰直角三角形,ADCAEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BFAC24(14分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:连接OC、OB,证出BOC是等边三角形,根据锐角三角函数的定义求解即可详解:如图所示,连接OC、OB多边形ABCDEF是正六边形,BOC=60°,OC=OB,BOC是等边三角形,OBM=60°,OM=OBsinOBM=4×2.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键2、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】3804.2千=3804200,3804200=3.8042×106;故选:C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.4、A【解析】根据分子为零,且分母不为零解答即可.【详解】解:代数式的值为零,x0,此时分母x-30,符合题意.故选A【点睛】本题考查了分式的值为零的条件若分式的值为零,需同时具备两个条件:分子的值为0,分母的值不为0,这两个条件缺一不可.5、C【解析】根据确定性事件、方差、众数以及平均数的定义进行解答即可【详解】解:A、“买一张电影票,座位号为偶数”是随机事件,此选项错误;B、若甲、乙两组数据的方差分别为S甲20.3,S乙20.1,则乙组数据比甲组数据稳定,此选项错误;C、一组数据2,4,5,5,3,6的众数是5,此选项正确;D、一组数据2,4,5,5,3,6的平均数是,此选项错误;故选:C【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、C【解析】分析:通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;设=2,得到=2=2,得到当=1时,=2,当=1时,=2,于是得到结论;根据“倍根方程”的定义即可得到结论;若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;详解:由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=2, 2,或2,方程-2x-8=0不是倍根方程;故错误;关于x的方程+ax+2=0是倍根方程, 设=2, =2=2, =±1,当=1时,=2, 当=1时,=2, +=a=±3, a=±3,故正确;关于x的方程a-6ax+c=0(a0)是倍根方程, =2,抛物线y=a-6ax+c的对称轴是直线x=3, 抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0), 故正确;点(m,n)在反比例函数y=的图象上, mn=4, 解m+5x+n=0得=,=, =4, 关于x的方程m+5x+n=0不是倍根方程;故选C点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键7、D【解析】先根据ABCD得出BCD=1,再由CDEF得出DCE=180°-2,再把两式相加即可得出结论【详解】解:ABCD,BCD=1,CDEF,DCE=180°-2,BCE=BCD+DCE=180°-2+1故选:D【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补8、A【解析】解:如图,连接BE,设BE与AC交于点P,四边形ABCD是正方形,点B与D关于AC对称,PD=PB,PD+PE=PB+PE=BE最小即P在AC与BE的交点上时,PD+PE最小,为BE的长度直角CBE中,BCE=90°,BC=9,CE=CD=3,BE=故选A点睛:此题考查了轴对称最短路线问题,正方形的性质,要灵活运用对称性解决此类问题找出P点位置是解题的关键9、A【解析】向左平移一个单位长度后解析式为:y=x+1.故选A.点睛:掌握一次函数的平移.10、D【解析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】3a2aa,选项A不正确;a2+a5a7,选项B不正确;(ab)3a3b3,选项C不正确;a2a4a6,选项D正确故选D【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、 【解析】分别利用零指数幂a0=1(a0),负指数幂a-p=(a0)化简计算即可.【详解】解:(3)02-1=1-=故答案为:.【点睛】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键12、甲【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,甲的方差大于乙的方差.故答案为:甲.【点睛】本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.13、15【解析】试题分析:OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6×5=15故答案为15考点:圆锥的计算14、【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是故答案为【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15、A【解析】试题分析:由题意得:SASBSC,故落在A区域的可能性大考点: 几何概率16、【解析】根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得【详解】解:如图示,根据题意可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即,解得故答案为:【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键17、m=8或【解析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在1x2时,随的增大而减小,在时取得最大值,即 解得符合题意.当即时,抛物线在1x2时,在时取得最大值,即 无解.当,即时,抛物线在1x2时,随的增大而增大,在时取得最大值,即 解得符合题意.综上所述,m的值为8或故答案为:8或【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题(共7小题,满分69分)18、(1)60;(2)s10t6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟【解析】(1)观察图像得出路程和时间,即可解决问题(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可【详解】(1)甲的速度为60米/分钟(2)当20t 1时,设s=mtn,由题意得:,解得:,所以s=10t6000;(3)当20t 1时,60t=10t6000,解得:t=25,2520=5;当1t 60时,60t=100,解得:t=50,5020=1综上所述:乙出发5分钟和1分钟时与甲在途中相遇(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400100(9060) x=360解得:x=2答:乙从景点B步行到景点C的速度是2米/分钟【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型19、(1)证明见解析;(2)1【解析】试题分析:(1)根据矩形的性质得到AB=CD,B=D=90°,根据折叠的性质得到E=B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论试题解析:(1)四边形ABCD是矩形,AB=CD,B=D=90°,将矩形ABCD沿对角线AC翻折,点B落在点E处,E=B,AB=AE,AE=CD,E=D,在AEF与CDF中,E=D,AFE=CFD,AE=CD,AEFCDF;(2)AB=4,BC=8,CE=AD=8,AE=CD=AB=4,AEFCDF,AF=CF,EF=DF,DF2+CD2=CF2,即DF2+42=(8DF)2,DF=3,EF=3,图中阴影部分的面积=SACESAEF=×4×8×4×3=1点睛:本题考查了翻折变换折叠的性质,熟练掌握折叠的性质是解题的关键20、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:购买篮球8个,排球12个;购买篮球9,排球11个;购买篮球2个,排球2个;方案最省钱【解析】试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:解得答:篮球每个50元,排球每个30元(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:50m+30(20-m)1解得:m2又m8,8m2篮球的个数必须为整数,只能取8、9、2满足题意的方案有三种:购买篮球8个,排球12个,费用为760元;购买篮球9,排球11个,费用为780元;购买篮球2个,排球2个,费用为1元以上三个方案中,方案最省钱点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键21、(1)证明见解析(2) 3【解析】(1)作辅助线,连接OE根据切线的判定定理,只需证DEOE即可;(2)连接BE根据BC、DE两切线的性质证明ADEBEC;又由角平分线的性质、等腰三角形的两个底角相等求得ABEAFD,所以;连接OF,交AD于H,由得FOE=FOA=60°,连接EF,则AOF、EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GMOE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.【详解】(1)连接OEOA=OE,AEO=EAOFAE=EAO,FAE=AEOOEAFDEAF,OEDEDE是O的切线(2)解:连接BE直径AB AEB=90°圆O与BC相切ABC=90°EAB+EBA=EBA+CBE=90°EAB=CBEDAE=CBEADE=BEC=90°ADEBEC 连接OF,交AE于G,由,设BC=2x,则AE=3xBECABC 解得:x1=2,(不合题意,舍去)AE=3x=6,BC=2x=4,AC=AE+CE=8AB=,BAC=30°AEO=EAO=EAF=30°,FOE=2FAE=60°FOE=FOA=60°,连接EF,则AOF、EOF都是等边三角形,四边形AOEF是菱形由对称性可知GO=GF,过点G作GMOE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质比较复杂,解答此题的关键是作出辅助线,利用数形结合解答22、1【解析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案【详解】原式=14÷+27=116+27=1【点睛】本题考查了实数的运算,解题的关键是熟练掌握运算顺序23、见解析.【解析】(1)画出O的两条直径,交点即为圆心O(2)作直线AO交O于F,直线BF即为所求【详解】解:作图如下:(1);(2).【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型24、(1)36 , 40, 1;(2)【解析】(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数(2)画出树状图,根据概率公式求解即可【详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;该班共有学生(2+1+7+4+1+1)÷10%=40人;训练后篮球定时定点投篮平均每个人的进球数是=1,故答案为:36,40,1(2)三名男生分别用A1,A2,A3表示,一名女生用B表示根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M) 的结果有6种,P(M)=