欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    浙江省台州市三门县重点达标名校2023届十校联考最后数学试题含解析.doc

    • 资源ID:88306649       资源大小:1.19MB        全文页数:28页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    浙江省台州市三门县重点达标名校2023届十校联考最后数学试题含解析.doc

    2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1点A(m4,12m)在第四象限,则m的取值范围是 ()AmBm4Cm4Dm42BAC放在正方形网格纸的位置如图,则tanBAC的值为()ABCD3数据”1,2,1,3,1”的众数是( )A1 B1.5 C1.6 D34关于x的方程x2+(k24)x+k+1=0的两个根互为相反数,则k值是()A1B±2C2D25的绝对值是()A8B8CD6下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD7已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=反比例函数y=在第一象限图象经过点A,与BC交于点FSAOF=,则k=()A15B13C12D58如图,A,B是半径为1的O上两点,且OAOB,点P从点A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()ABC或D或9把8a38a2+2a进行因式分解,结果正确的是( )A2a(4a24a+1)B8a2(a1)C2a(2a1)2D2a(2a+1)210在实数|3|,2,0,中,最小的数是()A|3|B2C0D11如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()ABCD12下列运算正确的是()Aa2a3=a6B()1=2C =±4D|6|=6二、填空题:(本大题共6个小题,每小题4分,共24分)13某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_14有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是_15如图,在等腰RtABC中,BAC90°,ABAC,BC4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为_16如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点若AC=,AEO=120°,则FC的长度为_17已知一组数据,的平均数是,那么这组数据的方差等于_18因式分解:3x23x=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知二次函数 ymx22mx+n 的图象经过(0,3)(1)n _;(2) 若二次函数 ymx22mx+n 的图象与 x 轴有且只有一个交点,求 m 值;(3) 若二次函数 ymx22mx+n 的图象与平行于 x 轴的直线 y5 的一个交点的横坐标为4,则另一个交点的坐标为 ;(4) 如图,二次函数 ymx22mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求PAC 面积的最大值20(6分)已知一次函数yx+1与抛物线yx2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1(1)写出抛物线的函数表达式;(2)判断ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由21(6分)如图,在RtABC中,C=90°,BE平分ABC交AC于点E,作EDEB交AB于点D,O是BED的外接圆求证:AC是O的切线;已知O的半径为2.5,BE=4,求BC,AD的长22(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3)(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由23(8分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,且(1)用含的代数式表示;(2)连结交于点,若,求的长24(10分)(1)计算:|3|2sin30°+()2(2)化简:.25(10分)如图,在四边形中,为的中点,于点,求的度数26(12分)如图,AB是O的直径,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与O交于另一点D,连结CD,设直线PB与直线AC交于点E求BAC的度数;当点D在AB上方,且CDBP时,求证:PCAC;在点P的运动过程中当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的ACD的度数;设O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积27(12分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可【详解】解:点A(m-1,1-2m)在第四象限, 解不等式得,m1,解不等式得,m所以,不等式组的解集是m1,即m的取值范围是m1故选B【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)2、D【解析】连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明ADC=90°,再利用三角函数定义可得答案【详解】连接CD,如图:,CD=,AC=,ADC=90°,tanBAC=故选D【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明ADC=90°3、A【解析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解【详解】在这一组数据中1是出现次数最多的,故众数是1故选:A【点睛】本题为统计题,考查众数的意义众数是一组数据中出现次数最多的数据,注意众数可以不止一个4、D【解析】根据一元二次方程根与系数的关系列出方程求解即可【详解】设方程的两根分别为x1,x1,x1+(k1-4)x+k-1=0的两实数根互为相反数,x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,=-40,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,=110,方程有两个不相等的实数根;k=-1故选D【点睛】本题考查的是根与系数的关系x1,x1是一元二次方程ax1+bx+c=0(a0)的两根时,x1+x1= ,x1x1= ,反过来也成立.5、C【解析】根据绝对值的计算法则解答如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数a;当a是零时,a的绝对值是零【详解】解:故选【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.6、A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误故选A点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴7、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值【详解】过点A作AMx轴于点M,如图所示设OA=a=OB,则,在RtOAM中,AMO=90°,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a,a)四边形OACB是菱形,SAOF=,OB×AM=,即×a×a=39,解得a=±,而a0,a=,即A(,6),点A在反比例函数y=的图象上,k=×6=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=S菱形OBCA8、D【解析】分两种情形讨论当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是,由此即可解决问题【详解】分两种情况讨论:当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象符合;当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象符合故答案为或故选D【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型9、C【解析】首先提取公因式2a,进而利用完全平方公式分解因式即可【详解】解:8a38a2+2a=2a(4a24a+1)=2a(2a1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.10、B【解析】直接利用利用绝对值的性质化简,进而比较大小得出答案【详解】在实数|-3|,-1,0,中,|-3|=3,则-10|-3|,故最小的数是:-1故选B【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键11、D【解析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)=.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.12、D【解析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、4cm【解析】由题意知ODAB,交AB于点C,由垂径定理可得出BC的长,在RtOBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论【详解】由题意知ODAB,交AB于点E,AB=16cm,BC=AB=×16=8cm,在RtOBE中,OB=10cm,BC=8cm,OC=(cm),CD=OD-OC=10-6=4(cm)故答案为4cm【点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键14、【解析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率【详解】解:列表如下:567895(6、5)(7、5)(8、5)(9、5)6(5、6)(7、6)(8、6)(9、6)7(5、7)(6、7)(8、7)(9、7)8(5、8)(6、8)(7、8)(9、8)9(5、9)(6、9)(7、9)(8、9)所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)= 故答案为.【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比15、2【解析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到AED=90°,接着由AEB=90°得到点E在以AB为直径的 O上,于是当点O、E、C共线时,CE最小,如图2,在RtAOC中利用勾股定理计算出OC=2,从而得到CE的最小值为22.【详解】连结AE,如图1,BAC=90°,AB=AC,BC=,AB=AC=4,AD为直径,AED=90°,AEB=90°,点E在以AB为直径的O上,O的半径为2,当点O、E. C共线时,CE最小,如图2在RtAOC中,OA=2,AC=4,OC=,CE=OCOE=22,即线段CE长度的最小值为22.故答案为:22.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.16、1【解析】先根据矩形的性质,推理得到OF=CF,再根据RtBOF求得OF的长,即可得到CF的长【详解】解:EFBD,AEO=120°,EDO=30°,DEO=60°,四边形ABCD是矩形,OBF=OCF=30°,BFO=60°,FOC=60°-30°=30°,OF=CF,又RtBOF中,BO=BD=AC=,OF=tan30°×BO=1,CF=1,故答案为:1【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分17、5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案详解:平均数为6, (3+4+6+x+9)÷5=6, 解得:x=8,方差为:点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型明确计算公式是解决这个问题的关键18、3x(x1)【解析】原式提取公因式即可得到结果【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(2)2;(2)m=2;(2)(2,5);(4)当a=时,PAC的面积取最大值,最大值为【解析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PDx轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出SACP关于a的函数关系式,配方后即可得出PAC面积的最大值【详解】解:(2)二次函数y=mx22mx+n的图象经过(0,2),n=2故答案为2(2)二次函数y=mx22mx2的图象与x轴有且只有一个交点,=(2m)24×(2)m=4m2+22m=0,解得:m2=0,m2=2m0,m=2(2)二次函数解析式为y=mx22mx2,二次函数图象的对称轴为直线x=2该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,另一交点的横坐标为2×24=2,另一个交点的坐标为(2,5)故答案为(2,5)(4)二次函数y=mx22mx2的图象经过点A(2,0),0=9m6m2,m=2,二次函数解析式为y=x22x2设直线AC的解析式为y=kx+b(k0),将A(2,0)、C(0,2)代入y=kx+b,得:,解得:,直线AC的解析式为y=x2过点P作PDx轴于点D,交AC于点Q,如图所示设点P的坐标为(a,a22a2),则点Q的坐标为(a,a2),点D的坐标为(a,0),PQ=a2(a22a2)=2aa2,SACP=SAPQ+SCPQ=PQOD+PQAD=a2+a=(a)2+,当a=时,PAC的面积取最大值,最大值为 【点睛】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出SACP关于a的函数关系式20、(1)yx27x+1;(2)ABC为直角三角形理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【解析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,5),作AMy轴于M,CNy轴于N,如图,证明ABM和BNC都是等腰直角三角形得到MBA45°,NBC45°,AB8 ,BN1,从而得到ABC90°,所以ABC为直角三角形;(3)利用勾股定理计算出AC10 ,根据直角三角形内切圆半径的计算公式得到RtABC的内切圆的半径2 ,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BIy轴,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI×24,则I(4,1),接着利用待定系数法求出直线AI的解析式为y2x7,直线AP的解析式为yx+13,然后分别求出P、Q、G的坐标即可【详解】解:(1)把A(m,9)代入yx+1得m+19,解得m8,则A(8,9),把A(8,9),B(0,1)代入yx2+bx+c得,解得,抛物线解析式为yx27x+1;故答案为yx27x+1;(2)ABC为直角三角形理由如下:当x1时,yx27x+13142+15,则C(1,5),作AMy轴于M,CNy轴于N,如图,B(0,1),A(8,9),C(1,5),BMAM8,BNCN1,ABM和BNC都是等腰直角三角形,MBA45°,NBC45°,AB8,BN1,ABC90°,ABC为直角三角形;(3)AB8,BN1,AC10,RtABC的内切圆的半径,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,I为ABC的内心,AI、BI为角平分线,BIy轴,而AIPQ,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,点I、P、Q、G为ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI×24,而BIy轴,I(4,1),设直线AI的解析式为ykx+n,则,解得,直线AI的解析式为y2x7,当x0时,y2x77,则G(0,7);设直线AP的解析式为yx+p,把A(8,9)代入得4+n9,解得n13,直线AP的解析式为yx+13,当y1时,x+131,则P(24,1)当x0时,yx+1313,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键21、(1)证明见解析;(2)BC=,AD=【解析】分析:(1)连接OE,由OB=OE知OBE=OEB、由BE平分ABC知OBE=CBE,据此得OEB=CBE,从而得出OEBC,进一步即可得证;(2)证BDEBEC得,据此可求得BC的长度,再证AOEABC得,据此可得AD的长详解:(1)如图,连接OE,OB=OE,OBE=OEB,BE平分ABC,OBE=CBE,OEB=CBE,OEBC,又C=90°,AEO=90°,即OEAC,AC为O的切线;(2)EDBE,BED=C=90°,又DBE=EBC,BDEBEC,即,BC=;AEO=C=90°,A=A,AOEABC,即,解得:AD=点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质22、 (1) y=x2+2x+3;(2)见解析.【解析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),得,该抛物线的解析式为y=x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:抛物线y=x2+2x+3=(x1)2+4,点B(3,0),点C(0,3),抛物线的对称轴为直线x=1,点A的坐标为(1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3t)2=t26t+10,当AC为斜边时,10=4+t2+t26t+10,解得,t1=1或t2=2,点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t26t+10,解得,t=,点Q的坐标为(1,),当CQ时斜边时,t26t+10=4+t2+10,解得,t=,点Q的坐标为(1,),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,)时,使得以A、C、Q为顶点的三角形为直角三角形【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.23、(1);(2)【解析】(1)连接OC,根据切线的性质得到OCDE,可以证明ADOC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有FAO=60°,再根据弧长公式计算即可【详解】解:(1)如图示,连结,是的切线,又,即(2)如图示,连结,四边形是平行四边形,四边形是菱形,是等边三角形,的长【点睛】本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键24、 (1)2;(2) xy【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=342×+4=2;(2)原式=xy点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.25、【解析】连接,根据线段垂直平分线的性质得到,根据等腰三角形的性质、三角形内角和定理计算即可【详解】连接,为的中点,于点,【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键26、(1)45°;(2)见解析;(3)ACD=15°;ACD=105°;ACD=60°;ACD=120°;36或【解析】(1)易得ABC是等腰直角三角形,从而BAC=CBA=45°;(2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;(3)先说明四边形OHEF是正方形,再利用DOHDFE求出EF的长,然后利用割补法求面积;根据EPCEBA可求PC=4,根据PDCPCA可求PD PA=PC2=16,再根据SABP=SABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.【详解】(1)解:(1)连接BC,AB是直径,ACB=90°.ABC是等腰直角三角形,BAC=CBA=45°; (2)解:,CDB=CDP=45°,CB= CA,CD平分BDP又CDBP,BE=EP,即CD是PB的中垂线,CP=CB= CA, (3) ()如图2,当 B在PA的中垂线上,且P在右时,ACD=15°;()如图3,当B在PA的中垂线上,且P在左,ACD=105°;()如图4,A在PB的中垂线上,且P在右时ACD=60°;()如图5,A在PB的中垂线上,且P在左时ACD=120°()如图6, , .()如图7, , , . , . , , , .设BD=9k,PD=2k, , , , .【点睛】本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.27、(1)y=-,y=-2x-4(2)1【解析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x4=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=×2×2+×2×6,=2+6,=1考点:反比例函数与一次函数的交点问题

    注意事项

    本文(浙江省台州市三门县重点达标名校2023届十校联考最后数学试题含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开