河北省石家庄市28中学2023届中考数学最后冲刺浓缩精华卷含解析.doc
-
资源ID:88306947
资源大小:707.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河北省石家庄市28中学2023届中考数学最后冲刺浓缩精华卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,矩形 ABCD 的边 AB=1,BE 平分ABC,交 AD 于点 E,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F,则图中阴影部分的面积是( )A2-BC2-D2如图,将ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若ACB=30°,则DAC的度数是( )ABCD3小带和小路两个人开车从A城出发匀速行驶至B城在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示有下列结论;A,B两城相距300 km;小路的车比小带的车晚出发1 h,却早到1 h;小路的车出发后2.5 h追上小带的车;当小带和小路的车相距50 km时,t或t.其中正确的结论有()ABCD4已知如图,ABC为直角三角形,C90°,若沿图中虚线剪去C,则1+2等于()A315°B270°C180°D135°5小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )ABCD6如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO2,OB1,BC2,则下列结论正确的是( )ABCD7如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A7海里/时B7海里/时C7海里/时D28海里/时8方程的解为( )Ax3Bx4Cx5Dx59如图,已知ABC中,A=75°,则1+2=( )A335°°B255°C155°D150°10下列运算结果为正数的是( )A1+(2)B1(2)C1×(2)D1÷(2)二、填空题(共7小题,每小题3分,满分21分)11二次根式中,x的取值范围是 12计算:12_132018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_14分解因式:a3-12a2+36a=_15在RtABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则RtABC的面积为_16已知关于x的一元二次方程mx2+5x+m22m=0有一个根为0,则m=_17已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_三、解答题(共7小题,满分69分)18(10分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .19(5分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元超市规定每盒售价不得少于45元根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?20(8分)如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标21(10分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出,;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?22(10分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为 人;(2)如图1项目D所在扇形的圆心角等于 ; (3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.23(12分)关于x的一元二次方程x2(2m3)x+m2+1=1(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况24(14分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF(1)说明BEF是等腰三角形;(2)求折痕EF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及EBF的度数,进而利用图中阴影部分的面积=S-S-S,求出答案【详解】矩形ABCD的边AB=1,BE平分ABC,ABE=EBF=45°,ADBC,AEB=CBE=45°,AB=AE=1,BE= ,点E是AD的中点,AE=ED=1,图中阴影部分的面积=S S S =1×2 ×1×1 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式2、D【解析】由题意知:ABCDEC,ACB=DCE=30°,AC=DC,DAC=(180°DCA)÷2=(180°30°)÷2=75°故选D【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等3、C【解析】观察图象可判断,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断,再令两函数解析式的差为50,可求得t,可判断,可得出答案【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,都正确;设小带车离开A城的距离y与t的关系式为y小带kt,把(5,300)代入可求得k60,y小带60t,设小路车离开A城的距离y与t的关系式为y小路mtn,把(1,0)和(4,300)代入可得解得y小路100t100,令y小带y小路,可得60t100t100,解得t2.5,即小带和小路两直线的交点横坐标为t2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,不正确;令|y小带y小路|50,可得|60t100t100|50,即|10040t|50,当10040t50时,可解得t,当10040t50时,可解得t,又当t时,y小带50,此时小路还没出发,当t时,小路到达B城,y小带250.综上可知当t的值为或或或时,两车相距50 km,不正确故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间4、B【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答【详解】如图,1、2是CDE的外角,1=4+C,2=3+C,即1+2=2C+(3+4),3+4=180°-C=90°,1+2=2×90°+90°=270°故选B【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和5、C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误故选C【点睛】考核知识点:正方体的表面展开图.6、C【解析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.【详解】解:AO2,OB1,BC2,a2,b1,c3,|a|c|,ab0,故选:C【点睛】此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.7、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中, 所以在中, 所以所以解得:故选A.8、C【解析】方程两边同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,检验:当x=5时,(x-1)(x+3)0,所以x=5是原方程的解,故选C.9、B【解析】A+B+C=180°,A=75°,B+C=180°A=105°1+2+B+C=360°,1+2=360°105°=255°故选B点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n2)×180°(n3且n为整数)是解题的关键10、B【解析】分别根据有理数的加、减、乘、除运算法则计算可得【详解】解:A、1+(2)(21)1,结果为负数;B、1(2)1+23,结果为正数;C、1×(2)1×22,结果为负数;D、1÷(2)1÷2,结果为负数;故选B【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须12、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案为-3.13、【解析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可【详解】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率=故答案为【点睛】本题考查的是用列表法或画树状图法求概率注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比14、a(a-6)2【解析】原式提取a,再利用完全平方公式分解即可【详解】原式=a(a2-12a+36)=a(a-6)2, 故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键15、【解析】如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题【详解】解:如图,设AHx,GBy,EHBC,FGAC,由可得x,y2,AC,BC7,SABC,故答案为【点睛】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型16、1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可【详解】关于x的一元二次方程mx1+5x+m11m=0有一个根为0,m11m=0且m0,解得,m=1,故答案是:1【点睛】本题考查了一元二次方程ax1+bx+c=0(a0)的解的定义解答该题时需注意二次项系数a0这一条件17、1【解析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积则c1=4×1,c=±1,(线段是正数,负值舍去),故c=1故答案为1【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数三、解答题(共7小题,满分69分)18、(1)详见解析;(2)详见解析;(3).【解析】(1)分别画出A、B、C三点的对应点即可解决问题;(2)由(1)得各顶点的坐标,然后利用位似图形的性质,即可求得各点的坐标,然后在图中作出位似三角形即可(3)求得所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,即为所求作;(2)如图,即为所求作;(3)面积=4×4-×2×4-×2×2-×2×4=6.【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.19、(1)y=20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解试题解析:(1)由题意得,=;(2)P=,x45,a=200,当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,抛物线P=的开口向下,当50x70时,每天销售粽子的利润不低于6000元的利润,又x58,50x58,在中,0,y随x的增大而减小,当x=58时,y最小值=20×58+1600=440,即超市每天至少销售粽子440盒考点:二次函数的应用20、 (1)、y=+x+4;(2)、不存在,理由见解析.【解析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.试题解析:(1)、抛物线y=a+bx+c(a0)过点C(0,4) C=4=1 b=2a 抛物线过点A(2,0) 4a2b+c="0" 由解得:a=,b=1,c=4 抛物线的解析式为:y=+x+4(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FHx轴于点H,FGy轴于点G. 设点F的坐标为(t,+t+4),其中0t4 则FH=+t+4 FG=tOBF的面积=OB·FH=×4×(+t+4)=+2t+8 OFC的面积=OC·FG=2t四边形ABFC的面积=AOC的面积+OBF的面积+OFC的面积=+4t+12令+4t+12=17 即+4t5=0 =1620=40 方程无解不存在满足条件的点F考点:二次函数的应用21、(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)被调查总人数为m=10÷10%=100人,用支付宝人数所占百分比n%= ,m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.22、(1)200;(2)54°;(3)见解析;(4)【解析】(1)根据A的人数及所占的百分比即可求出总人数;(2)用D的人数除以总人数再乘360°即可得出答案; (3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可【详解】解:(1)学生报名总人数为(人),故答案为:200;(2)项目所在扇形的圆心角等于,故答案为:54°;(3)项目的人数为,补全图形如下:(4)画树状图得:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.恰好选中甲、乙两名同学的概率为.【点睛】本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键23、 (1) ; (2)方程有两个不相等的实根.【解析】分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可详解:(1)m是方程的一个实数根,m2-(2m-3)m+m2+1=1,m;(2)=b2-4ac=-12m+5,m1,-12m1=-12m+51此方程有两个不相等的实数根点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键24、(1)见解析;(2).【解析】(1)根据折叠得出DEF=BEF,根据矩形的性质得出ADBC,求出DEF=BFE,求出BEF=BFE即可;(2)过E作EMBC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在RtEMF中,由勾股定理求出即可【详解】(1)现将纸片折叠,使点D与点B重合,折痕为EF,DEF=BEF四边形ABCD是矩形,ADBC,DEF=BFE,BEF=BFE,BE=BF,即BEF是等腰三角形;(2)过E作EMBC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM现将纸片折叠,使点D与点B重合,折痕为EF,DE=BE,DO=BO,BDEF四边形ABCD是矩形,BC=8,AD=BC=8,BAD=90°在RtABE中,AE2+AB2=BE2,即(8BE)2+62=BE2,解得:BE=DE=BF,AE=8DE=8=BM,FM=在RtEMF中,由勾股定理得:EF=故答案为【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键