浙江省温州市实验中学2022-2023学年中考数学全真模拟试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,PA,PB分别与O相切于A,B两点,若C65°,则P的度数为( )A65°B130°C50°D100°2定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A命题(1)与命题(2)都是真命题B命题(1)与命题(2)都是假命题C命题(1)是假命题,命题(2)是真命题D命题(1)是真命题,命题(2)是假命题3如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B已知小颖的眼睛D离地面的高度CD1.5m,她离镜子的水平距离CE0.5m,镜子E离旗杆的底部A处的距离AE2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A4.5mB4.8mC5.5mD6 m4下列方程中是一元二次方程的是()ABCD5将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是( )ABCD6计算 的结果为()A1BxCD7如图,在平面直角坐标系中,OAB的顶点A在x轴正半轴上,OC是OAB的中线,点B、C在反比例函数y=(x0)的图象上,则OAB的面积等于()A2B3C 4D68已知x2+mx+25是完全平方式,则m的值为()A10B±10C20D±209二次函数的图象如图所示,则下列各式中错误的是( )Aabc0Ba+b+c0Ca+cbD2a+b=010如图是二次函数y=ax2+bx+c的图象,有下列结论:ac1;a+b1;4acb2;4a+2b+c1其中正确的个数是()A1个B2个C3个D4个二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在梯形ACDB中,ABCD,C+D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_12已知|x|=3,y2=16,xy0,则xy=_13如图,已知等腰直角三角形 ABC 的直角边长为 1,以 RtABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD,再以 RtACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE依此类推,直到第五个等腰直角三角形 AFG,则由这五个等腰直角三角形所构成的图形的面积为_14含角30°的直角三角板与直线,的位置关系如图所示,已知,1=60°,以下三个结论中正确的是_(只填序号)AC=2BC BCD为正三角形 AD=BD15点(a1,y1)、(a1,y2)在反比例函数y(k0)的图象上,若y1y2,则a的范围是_16如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .三、解答题(共8题,共72分)17(8分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 18(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角FHE=60°,求篮框D到地面的距离(精确到0.01米).(参考数据:cos75°0.2588, sin75°0.9659,tan75°3.732,) 19(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元请解答以下问题:(1)填空:每天可售出书 本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?20(8分)先化简,然后从1,0,2中选一个合适的x的值,代入求值21(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A非常了解,B比较了解,C基本了解,D不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率22(10分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60x<70,70x<80,80x<90,90x100):A、B两班学生测试成绩在80x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6m96.9B班80.8n153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析)23(12分)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m1,连接CA,若ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由24如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;(1)求c与b的函数关系式;(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AEDF,求此二次函数解析式;(3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:PA、PB是O的切线,OAAP,OBBP,OAP=OBP=90°,又AOB=2C=130°,则P=360°(90°+90°+130°)=50°故选C考点:切线的性质2、C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论(1)P(a,b)在y=上, a和b同号,所以对称轴在y轴左侧,存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题(2)函数y=的所有“派生函数”为y=ax2+bx, x=0时,y=0,所有“派生函数”为y=ax2+bx经过原点,函数y=的所有“派生函数”,的图象都进过同一点,是真命题考点:(1)命题与定理;(2)新定义型3、D【解析】根据题意得出ABECDE,进而利用相似三角形的性质得出答案【详解】解:由题意可得:AE2m,CE0.5m,DC1.5m,ABCEDC,即,解得:AB6,故选:D【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出ABECDE是解答此题的关键4、C【解析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、是分式方程,故本选项错误;C、化简得:是一元二次方程,故本选项正确;D、是二元二次方程,故本选项错误;故选:C【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键5、D【解析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【详解】由题意得,a=-.设旋转180°以后的顶点为(x,y),则x=2×0-(-2)=2,y=2×3-5=1,旋转180°以后的顶点为(2,1),旋转180°以后所得图象的解析式为:.故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.6、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则7、B【解析】作BDx轴于D,CEx轴于E,BDCE,OC是OAB的中线,设CE=x,则BD=2x,C的横坐标为,B的横坐标为,OD=,OE=,DE=OE-OD=,AE=DE=,OA=OE+AE=,SOAB=OABD=×=1故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.8、B【解析】根据完全平方式的特点求解:a2±2ab+b2.【详解】x2+mx+25是完全平方式,m=±10,故选B【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍9、B【解析】根据二次函数的图象与性质逐一判断即可【详解】解:由图象可知抛物线开口向上,对称轴为,故D正确,又抛物线与y轴交于y轴的负半轴,故A正确;当x=1时,即,故B错误;当x=-1时,即,故C正确,故答案为:B【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质10、C【解析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断【详解】解:根据图示知,该函数图象的开口向上,a>1;该函数图象交于y轴的负半轴,c<1;故正确;对称轴 b<1;故正确;根据图示知,二次函数与x轴有两个交点,所以,即,故错误故本选项正确正确的有3项故选C【点睛】本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解析】延长AC和BD,交于M点,M、E、F三点共线,EF=MFME.【详解】延长AC和BD,交于M点,M、E、F三点共线,C+D=90°,MCD是直角三角形,MF=,同理ME=,EF=MFME=4-1=3.【点睛】本题考查了直角三角形斜边中线的性质.12、±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想详解:因为|x|=1,所以x=±1因为y2=16,所以y=±2又因为xy0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论13、12.2【解析】ABC是边长为1的等腰直角三角形,SABC=×1×1=11-1;AC=,AD=1,SACD=1=11-1第n个等腰直角三角形的面积是1n-1SAEF=14-1=4,SAFG=12-1=8,由这五个等腰直角三角形所构成的图形的面积为+1+1+4+8=12.2故答案为12.214、【解析】根据平行线的性质以及等边三角形的性质即可求出答案【详解】由题意可知:A=30°,AB=2BC,故错误;l1l2,CDB=1=60°CBD=60°,BCD是等边三角形,故正确;BCD是等边三角形,BCD=60°,ACD=A=30°,AD=CD=BD,故正确故答案为【点睛】本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型15、1a1【解析】解:k0,在图象的每一支上,y随x的增大而减小,当点(a-1,y1)、(a+1,y2)在图象的同一支上,y1y2,a-1a+1,解得:无解;当点(a-1,y1)、(a+1,y2)在图象的两支上,y1y2,a-10,a+10,解得:-1a1故答案为:-1a1【点睛】本题考查反比例函数的性质16、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90°,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3由翻折的性质,得BE=BE=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长为36或故答案为36或考点:3翻折变换(折叠问题);3分类讨论三、解答题(共8题,共72分)17、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可; (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到: (1)联结CE分类讨论:(i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,利用勾股定理求得a的值; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答详解:(1)顶点C在直线x=2上,b=4a 将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=4,抛物线的解析式为y=x24x+1 (2)过点C作CMx轴,CNy轴,垂足分别为M、N y=x24x+1(x2)21,C(2,1) CM=MA=1,MAC=45°,ODA=45°,OD=OA=1 抛物线y=x24x+1与y轴交于点B,B(0,1),BD=2 抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积, (1)联结CE 四边形BCDE是平行四边形,点O是对角线CE与BD的交点,即 (i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,即 a2=(a2)2+5,解得: ,点 同理,得点; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、 综上所述:满足条件的点有), 点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键18、3.05米.【解析】延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan75°=0.60×3.732=2.2392,GM=AB=2.2392,在RtAGF中,FAG=FHD=60°,sinFAG=,sin60°=,FG=2.165,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米考点:解直角三角形的应用19、(1)(30010x)(2)每本书应涨价5元【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(30010x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)每本书上涨了x元,每天可售出书(30010x)本故答案为30010x(2)设每本书上涨了x元(x10),根据题意得:(4030+x)(30010x)=3750,整理,得:x220x+75=0,解得:x1=5,x2=15(不合题意,舍去)答:若书店想每天获得3750元的利润,每本书应涨价5元20、-. 【解析】先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式= - = - = = =- . 当x=-1或者x=1时分式没有意义所以选择当x=2时,原式=.【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为121、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为【解析】【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;(3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C所对应扇形的圆心角度数是360°×=90°, 故答案为60、90°;(2)D类型人数为60×5%=3,则B类型人数为60(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.22、(1)见解析;(2)m=81,n=85;(3)略.【解析】(1)先求出B班人数,根据两班人数相同可求出A班70x<80组的人数,补全统计图即可;(2)根据中位数的定义求解即可;(3)可以从中位数和方差的角度分析,合理即可.【详解】解:(1)A、B两班学生人数=5+2+3+22+8=40人,A班70x<80组的人数=40-1-7-13-9=10人,A、B两班学生数学成绩频数分布直方图如下:(2)根据中位数的定义可得:m=81,n=85;(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.【点睛】本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.23、(1)A(4,0),C(3,3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,4);【解析】方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;(2) 先用m表示出P, A C三点的坐标,分别讨论APC=,ACP=,PAC=三种情况, 利用勾股定理即可求得m的值;(3) 设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,可得RtFNPRtPBC,NP:NF=BC:BP求得直线PE的解析式,后利用PEC是以P为直角顶点的等腰直角三角形求得E点坐标.方法二:(1)同方法一.(2) 由ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标【详解】方法一:解:(1)若m=2,抛物线y=x22mx=x24x,对称轴x=2,令y=0,则x24x=0,解得x=0,x=4,A(4,0),P(1,2),令x=1,则y=3,B(1,3),C(3,3)(2)抛物线y=x22mx(m1),A(2m,0)对称轴x=m,P(1,m)把x=1代入抛物线y=x22mx,则y=12m,B(1,12m),C(2m1,12m),PA2=(m)2+(2m1)2=5m24m+1,PC2=(2m2)2+(1m)2=5m210m+5,AC2=1+(12m)2=24m+4m2,ACP为直角三角形,当ACP=90°时,PA2=PC2+AC2,即5m24m+1=5m210m+5+24m+4m2,整理得:4m210m+6=0,解得:m=,m=1(舍去),当APC=90°时,PA2+PC2=AC2,即5m24m+1+5m210m+5=24m+4m2,整理得:6m210m+4=0,解得:m=,m=1,和1都不符合m1,故m=(3)设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,FPN=PCB,PNF=CBP=90°,RtFNPRtPBC,NP:NF=BC:BP,即=,y=2x2m,直线PE的解析式为y=2x2m令y=0,则x=1+,E(1+m,0),PE2=(m)2+(m)2=,=5m210m+5,解得:m=2,m=,E(2,0)或E(,0),在x轴上存在E点,使得PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=2m,E(0,2m)PE2=(2)2+12=55m210m+5=5,解得m=2,m=0(舍去),E(0,4)y轴上存在点E,使得PEC是以P为直角顶点的等腰直角三角形,此时E(0,4),在坐标轴上是存在点E,使得PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,4);方法二:(1)略(2)P(1,m),B(1,12m),对称轴x=m,C(2m1,12m),A(2m,0),ACP为直角三角形,ACAP,ACCP,APCP,ACAP,KAC×KAP=1,且m1,m=1(舍)ACCP,KAC×KCP=1,且m1,=1,m=,APCP,KAP×KCP=1,且m1,=1,m=(舍)(3)P(1,m),C(2m1,12m),KCP=,PEC是以P为直角顶点的等腰直角三角形,PEPC,KPE×KCP=1,KPE=2,P(1,m),lPE:y=2x2m,点E在坐标轴上,当点E在x轴上时,E(,0)且PE=PC,(1)2+(m)2=(2m11)2+(12m+m)2,m2=5(m1)2,m1=2,m2=,E1(2,0),E2(,0),当点E在y轴上时,E(0,2m)且PE=PC,(10)2+(m+2+m)2=(2m11)2+(12m+m)2,1=(m1)2,m1=2,m2=0(舍),E(0,4),综上所述,(2,0)或(,0)或(0,4)【点睛】本题主要考查二次函数的图象与性质. 扩展:设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:AB=.设平面内直线AB的解析式为:,直线CD的解析式为:(1)若AB/CD,则有:;(2)若ABCD,则有:.24、(1);(2);(3)【解析】(1)把A(-1,0)代入y=x2-bx+c,即可得到结论;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=+1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;(3)连接QM,DM,根据平行线的判定得到QNMH,根据平行线的性质得到NMH=QNM,根据已知条件得到QMN=MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到NMH=MDH推出NMD=90°;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论【详解】(1)把A(1,0)代入,;(2)由(1)得,点D为抛物线顶点,当时,将代入得,解得:,(舍去),二次函数解析式为:;(3)连接QM,DM,设,则,同理,设,则,在中,;,即,解得:,(舍去),当时,过P作于T,【点睛】本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键