浙江省杭州市上城区杭州中学2023年中考数学猜题卷含解析.doc
-
资源ID:88307093
资源大小:734KB
全文页数:15页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙江省杭州市上城区杭州中学2023年中考数学猜题卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一个正多边形的内角和为900°,那么从一点引对角线的条数是()A3B4C5D62若一次函数的图像过第一、三、四象限,则函数( )A有最大值B有最大值C有最小值D有最小值3如图,在矩形ABCD中,E是AD边的中点,BEAC,垂足为点F,连接DF,分析下列四个结论:AEFCAB;CF=2AF;DF=DC;tanCAD=其中正确的结论有()A4个B3个C2个D1个4下列博物院的标识中不是轴对称图形的是( )ABCD5据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A5.3×103B5.3×104C5.3×107D5.3×1086已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30°B60°C30°或150°D60°或120°7用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()ABCD8下列算式的运算结果正确的是()Am3m2=m6 Bm5÷m3=m2(m0)C(m2)3=m5 Dm4m2=m29下列计算结果为a6的是()Aa2a3 Ba12÷a2 C(a2)3 D(a2)310如图,已知ABC的三个顶点均在格点上,则cosA的值为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_S乙2(填“”“”或“=”)12在平面直角坐标系中,将点A(3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是_13哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_14在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_15已知O的半径为5,由直径AB的端点B作O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为_,此函数的最大值是_,最小值是_16若代数式有意义,则实数x的取值范围是_.17分解因式:8x²-8xy+2y²= _ .三、解答题(共7小题,满分69分)18(10分)如图,ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EFDC交BC的延长线于F;(1)求证:DE=CF;(2)若B=60°,求EF的长19(5分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角CAE=30°,沿着AE方向前进15米到点B处测得CBE=45°,求公路的宽度(结果精确到0.1米,参考数据:1.73)20(8分)在RtABC中,ACB90°,以点A为圆心,AC为半径,作A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交A于点F,连接AF、BF、DF(1)求证:BF是A的切线(2)当CAB等于多少度时,四边形ADFE为菱形?请给予证明21(10分)如图,在ABCD中,BAC=90°,对角线AC,BD相交于点P,以AB为直径的O分别交BC,BD于点E,Q,连接EP并延长交AD于点F(1)求证:EF是O的切线;(2)求证:=4BPQP22(10分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点(1)求k和b的值;(2)点G是轴上一点,且以点、C、为顶点的三角形与相似,求点G的坐标;(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上如果存在,直接写出点E的坐标,如果不存在,试说明理由23(12分)解不等式组并写出它的所有整数解24(14分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这三种可能性大小相同,现有两辆汽车经过这个十字路口(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率(2)求至少有一辆汽车向左转的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】n边形的内角和可以表示成(n-2)180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)180°=900°,解得:n=1则这个正多边形是正七边形所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.2、B【解析】解:一次函数y=(m+1)x+m的图象过第一、三、四象限,m+10,m0,即-1m0,函数有最大值,最大值为,故选B3、A【解析】正确只要证明EAC=ACB,ABC=AFE=90°即可;正确由ADBC,推出AEFCBF,推出=,由AE=AD=BC,推出=,即CF=2AF;正确只要证明DM垂直平分CF,即可证明;正确设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N四边形ABCD是矩形,ADBC,ABC=90°,AD=BC,EAC=ACBBEAC于点F,ABC=AFE=90°,AEFCAB,故正确;ADBC,AEFCBF,=AE=AD=BC,=,CF=2AF,故正确;DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NFBEAC于点F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,tanCAD=故正确故选A【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键解题时注意:相似三角形的对应边成比例4、A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误5、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).6、D【解析】【分析】由图可知,OA=10,OD=1根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】由图可知,OA=10,OD=1,在RtOAD中,OA=10,OD=1,AD=,tan1=,1=60°,同理可得2=60°,AOB=1+2=60°+60°=120°,C=60°,E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.7、D【解析】分析:根据主视图和俯视图之间的关系可以得出答案详解: 主视图和俯视图的长要相等, 只有D选项中的长和俯视图不相等,故选D点睛:本题主要考查的就是三视图的画法,属于基础题型三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等8、B【解析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案【详解】A、m3m2=m5,故此选项错误;B、m5÷m3=m2(m0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键9、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【详解】A、a2a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则10、D【解析】过B点作BDAC,如图,由勾股定理得,AB=,AD=,cosA=,故选D二、填空题(共7小题,每小题3分,满分21分)11、【解析】分别根据方差公式计算出甲、乙两人的方差,再比较大小【详解】=8,=(78)2+(98)2+(88)2+(68)2+(108)2=(1+1+0+4+4)=2,=(78)2+(88)2+(98)2+(88)2+(88)2=(1+0+1+0+0)=0.4,故答案为:【点睛】本题考查了方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定12、(0,0)【解析】根据坐标的平移规律解答即可【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是(-3+3,2-2),即(0,0),故答案为(0,0)【点睛】此题主要考查坐标与图形变化-平移平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减13、10%【解析】设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解【详解】设平均每次上调的百分率是x,依题意得,解得:,(不合题意,舍去)答:平均每次上调的百分率为10%故答案是:10%【点睛】此题考查了一元二次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解14、(672,2019)【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.详解:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,2018÷3=6722,走完第2018步,为第673个循环组的第2步,所处位置的横坐标为672,纵坐标为672×3+3=2019,棋子所处位置的坐标是(672,2019)故答案为:(672,2019)点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.15、x2+x+20(0x10) 不存在 【解析】先连接BP,AB是直径,BPBM,所以有,BMP=APB=90°,又PBM=BAP,那么有PMBPAB,于是PM:PB=PB:AB,可求从而有(0x10),再根据二次函数的性质,可求函数的最大值【详解】如图所示,连接PB,PBM=BAP,BMP=APB=90°,PMBPAB,PM:PB=PB:AB,(0x10), AP+2PM有最大值,没有最小值,y最大值= 故答案为(0x10),不存在【点睛】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.16、x5.【解析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+50,解得x5,故答案是:x5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.17、1【解析】提取公因式1,再对余下的多项式利用完全平方公式继续分解完全平方公式:a1±1ab+b1=(a±b)1【详解】8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解三、解答题(共7小题,满分69分)18、证明见解析;【解析】根据两组对边分别平行的四边形是平行四边形即可证明;只要求出CD即可解决问题.【详解】证明:、E分别是AB、AC的中点,又四边形CDEF为平行四边形,又为AB中点,在中,四边形CDEF是平行四边形,【点睛】本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型19、公路的宽为20.5米【解析】作CDAE,设CD=x米,由CBD=45°知BD=CD=x,根据tanCAD=,可得=,解之即可【详解】解:如图,过点C作CDAE于点D,设公路的宽CD=x米,CBD=45°,BD=CD=x,在RtACD中,CAE=30°,tanCAD=,即=,解得:x=20.5(米),答:公路的宽为20.5米【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形20、(1)证明见解析;(2)当CAB=60°时,四边形ADFE为菱形;证明见解析;【解析】分析(1)首先利用平行线的性质得到FAB=CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;(2)当CAB=60°时,四边形ADFE为菱形,根据CAB=60°,得到FAB=CAB=CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形详解:(1)证明:EFABFAB=EFA,CAB=EAE=AFEFA =EFAB=CABAC=AF,AB=ABABCABF AFB=ACB=90°, BF是A的切线. (2)当CAB=60°时,四边形ADFE为菱形.理由:EFABE=CAB=60°AE=AFAEF是等边三角形AE=EF,AE=ADEF=AD四边形ADFE是平行四边形AE=EF平行四边形ADFE为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大21、(1)证明见解析;(2)证明见解析【解析】试题分析:(1)连接OE,AE,由AB是O的直径,得到AEB=AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出OEP=OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是O的直径,得到AQB=90°根据相似三角形的性质得到=PBPQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论试题解析:(1)连接OE,AE,AB是O的直径,AEB=AEC=90°,四边形ABCD是平行四边形,PA=PC,PA=PC=PE,PAE=PEA,OA=OE,OAE=OEA,OEP=OAC=90°,EF是O的切线;(2)AB是O的直径,AQB=90°,APQBPA,=PBPQ,在AFP与CEP中,PAF=PCE,APF=CPE,PA=PC,AFPCEP,PF=PE,PA=PE=EF,=4BPQP考点:切线的判定;平行四边形的性质;相似三角形的判定与性质22、 (1)k=-,b=1;(1) (0,1)和 【解析】分析:(1) 由直线经过点,可得由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;(3)设E(a,),E关于直线AB的对称点E为(0,b),EE与AB的交点为P则EEAB,P为EE的中点,列方程组,求解即可得到a的值,进而得到答案详解:(1) 由直线经过点,可得由抛物线的对称轴是直线,可得 直线与x轴、y轴分别相交于点、,点的坐标是,点的坐标是抛物线的顶点是点,点的坐标是点是轴上一点,设点的坐标是BCG与BCD相似,又由题意知,BCG与相似有两种可能情况: 如果,那么,解得,点的坐标是如果,那么,解得,点的坐标是综上所述:符合要求的点有两个,其坐标分别是和 (3)设E(a,),E关于直线AB的对称点E为(0,b),EE与AB的交点为P,则EEAB,P为EE的中点, ,整理得:,(a-1)(a+1)=0,解得:a=1或a=1当a=1时,=;当a=1时,=;点的坐标是或点睛:本题是二次函数的综合题考查了二次函数的性质、解析式的求法以及相似三角形的性质解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为1和P是EE的中点23、不等式组的整数解有1、0、1【解析】先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】,解不等式可得,x-2;解不等式可得,x1;不等式组的解集为:2x1,不等式组的整数解有1、0、1【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键24、 (1);(2)【解析】(1)可以采用列表法或树状图求解可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等P(至少有一辆汽车向左转)=【点睛】此题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解