欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    江苏省泰州市泰兴市黄桥教育联盟重点名校2022-2023学年中考冲刺卷数学试题含解析.doc

    • 资源ID:88307225       资源大小:829KB        全文页数:21页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    江苏省泰州市泰兴市黄桥教育联盟重点名校2022-2023学年中考冲刺卷数学试题含解析.doc

    2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下面的统计图反映了我市20112016年气温变化情况,下列说法不合理的是()A20112014年最高温度呈上升趋势B2014年出现了这6年的最高温度C20112015年的温差成下降趋势D2016年的温差最大2下列各式计算正确的是()Aa4a3=a12B3a4a=12aC(a3)4=a12Da12÷a3=a43平面直角坐标系中的点P(2m,m)在第一象限,则m的取值范围在数轴上可表示为( )ABCD4在ABC中,C90°,AC9,sinB,则AB(    )A15                              B12                              C9                       D65如图,在RtABC中,C=90°,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A1B2C3D46下列计算正确的是()A2x+3x=5xB2x3x=6xC(x3)2=5Dx3x2=x7一个几何体的三视图如图所示,那么这个几何体是( )ABCD8下面四个几何体中,左视图是四边形的几何体共有()A1个B2个C3个D4个9一元二次方程mx2+mx0有两个相等实数根,则m的值为()A0B0或2C2D210如图,已知直线abc,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A4B4.5C5D5.5二、填空题(本大题共6个小题,每小题3分,共18分)11如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为_m. 12一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为_13如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ给出如下结论:DQ1;SPDQ;cosADQ=其中正确结论是_(填写序号)14如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y(x0)的图象经过菱形OABC中心E点,则k的值为_15如图,已知正方形ABCD的边长为4,B的半径为2,点P是B上的一个动点,则PDPC的最大值为_16如图,在直角三角形ABC中,ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_三、解答题(共8题,共72分)17(8分)如图1,OABC的边OC在y轴的正半轴上,OC3,A(2,1),反比例函数y (x0)的图象经过点B(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y (x0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,求直线BD的解析式;求线段ED的长度 18(8分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF(1)判断AF与O的位置关系并说明理由;(2)若O的半径为4,AF=3,求AC的长19(8分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1(1)在图1中画出AOB关于x轴对称的A1OB1,并写出点A1,B1的坐标;(2)在图2中画出将AOB绕点O顺时针旋转90°的A2OB2,并求出线段OB扫过的面积20(8分)在等腰RtABC中,ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CEAD于点E(1)如图1,若BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CFCE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM21(8分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:级、级、级、级将收集的数据绘制成如下两幅不完整的统计图请根据图中提供的信息,解答下列问题:()请补全上面的条形图()所抽查学生“诵读经典”时间的中位数落在_级()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?22(10分)如图,已知三角形ABC的边AB是0的切线,切点为BAC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分ACE;(2)若BE=3,CE=4,求O的半径.23(12分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离)小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_米/分,a=_;并在图中画出y2与x的函数图象(2)求小新路过小华家后,y1与x之间的函数关系式(3)直接写出两人离小华家的距离相等时x的值24如图,直线与双曲线相交于、两点.(1) ,点坐标为 (2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】利用折线统计图结合相应数据,分别分析得出符合题意的答案【详解】A选项:年最高温度呈上升趋势,正确;B选项:2014年出现了这6年的最高温度,正确;C选项:年的温差成下降趋势,错误;D选项:2016年的温差最大,正确;故选C【点睛】考查了折线统计图,利用折线统计图获取正确信息是解题关键2、C【解析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D【详解】Aa4a3=a7,故A错误;B3a4a=12a2,故B错误;C(a3)4=a12,故C正确;Da12÷a3=a9,故D错误故选C【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键3、B【解析】根据第二象限中点的特征可得: ,解得: .在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征4、A【解析】根据三角函数的定义直接求解.【详解】在RtABC中,C90°,AC9,解得AB1故选A5、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得B=CAD=DAB=30°,DE垂直平分AB,DA=DB,B=DAB,AD平分CAB,CAD=DAB, C=90°,3CAD=90°,CAD=30°, AD平分CAB,DEAB,CDAC, CD=DE=BD, BC=3, CD=DE=1考点:线段垂直平分线的性质6、A【解析】依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可【详解】A、2x3x5x,故A正确;B、2x3x6x2,故B错误;C、(x3)2x6,故C错误;D、x3与x2不是同类项,不能合并,故D错误故选A【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键7、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱故选C8、B【解析】简单几何体的三视图【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个故选B9、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值【详解】一元二次方程mx1+mx0有两个相等实数根,m14m×()m1+1m0,解得:m0或m1,经检验m0不合题意,则m1故选C【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根10、B【解析】试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=12故选B考点:平行线分线段成比例二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可解:同一时刻物高与影长成正比例设旗杆的高是xm1.6:1.2=x:9x=1即旗杆的高是1米故答案为1考点:相似三角形的应用12、1【解析】试题解析:设俯视图的正方形的边长为其俯视图为正方形,从主视图可以看出,正方形的对角线长为 解得 这个长方体的体积为4×3=113、【解析】连接OQ,OD,如图1易证四边形DOBP是平行四边形,从而可得DOBP结合OQ=OB,可证到AOD=QOD,从而证到AODQOD,则有DQ=DA=1;连接AQ,如图4,根据勾股定理可求出BP易证RtAQBRtBCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;过点Q作QHDC于H,如图4易证PHQPCB,运用相似三角形的性质可求出QH,从而可求出SDPQ的值;过点Q作QNAD于N,如图3易得DPNQAB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在RtDNQ中运用三角函数的定义,就可求出cosADQ的值【详解】解:连接OQ,OD,如图1易证四边形DOBP是平行四边形,从而可得DOBP结合OQ=OB,可证到AOD=QOD,从而证到AODQOD,则有DQ=DA=1故正确;连接AQ,如图4则有CP=,BP=易证RtAQBRtBCP,运用相似三角形的性质可求得BQ=,则PQ=,故正确;过点Q作QHDC于H,如图4易证PHQPCB,运用相似三角形的性质可求得QH=,SDPQ=DPQH=××=故错误;过点Q作QNAD于N,如图3易得DPNQAB,根据平行线分线段成比例可得,则有,解得:DN=由DQ=1,得cosADQ=故正确综上所述:正确结论是故答案为:【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用14、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.15、1【解析】分析: 由PDPCPDPGDG,当点P在DG的延长线上时,PDPC的值最大,最大值为DG1详解: 在BC上取一点G,使得BG1,如图,PBGPBC,PBGCBP,PGPC,当点P在DG的延长线上时,PDPC的值最大,最大值为DG1故答案为1点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题16、4【解析】连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍【详解】解:连接OP、OB,图形BAP的面积=AOB的面积+BOP的面积+扇形OAP的面积,图形BCP的面积=BOC的面积+扇形OCP的面积BOP的面积,又点P是半圆弧AC的中点,OA=OC,扇形OAP的面积=扇形OCP的面积,AOB的面积=BOC的面积,两部分面积之差的绝对值是 点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.三、解答题(共8题,共72分)17、(1)B(2,4),反比例函数的关系式为y;(2)直线BD的解析式为yx6;ED2 【解析】试题分析:(1)过点A作APx轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;(2)先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; 先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.试题解析:(1)过点A作APx轴于点P,则AP1,OP2,又ABOC3,B(2,4).,反比例函数y (x0)的图象经过的B,4,k8.反比例函数的关系式为y;(2)由点A(2,1)可得直线OA的解析式为yx解方程组,得,点D在第一象限,D(4,2)由B(2,4),点D(4,2)可得直线BD的解析式为yx6;把y0代入yx6,解得x6,E(6,0),过点D分别作x轴的垂线,垂足分别为G,则G(4,0),由勾股定理可得:ED.点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.18、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90°OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90°AF为圆O的切线,即AF与O的位置关系是相切(2)AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90°,证出OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90°,OFBC,AEO=90°,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90°,OAF=90°,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90°,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,3×4=1×AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质19、(1)A1(1,2),B1(2,1);(2)【解析】(1)根据轴对称性质解答点关于x轴对称横坐标不变,纵坐标互为相反数;(2)根据旋转变换的性质、扇形面积公式计算【详解】(1)如图所示:A1(1,2),B1(2,1);(2)将AOB绕点O顺时针旋转90°的A2OB2如图所示: 线段OB扫过的面积为:【点睛】此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐标位置是解题关键.20、 (1) 2 ;(2)见解析【解析】分析:(1)先求得:CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得ECD=90°-60°=30°,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明ACEBCF,则BFC=AEC=90°,证明C、M、B、F四点共圆,则BCM=MFB=45°,由等腰三角形三线合一的性质可得AM=BM详解:(1)ACB=90°,AC=BC,CAB=45°,BAD=15°,CAE=45°15°=30°,RtACE中,CE=1,AC=2CE=2,RtCED中,ECD=90°60°=30°,CD=2ED,设ED=x,则CD=2x,CE=x,x=1,x=,CD=2x=,BD=BCCD=ACCD=2;(2)如图2,连接CM,ACB=ECF=90°,ACE=BCF,AC=BC,CE=CF,ACEBCF,BFC=AEC=90°,CFE=45°,MFB=45°,CFM=CBA=45°,C、M、B、F四点共圆,BCM=MFB=45°,ACM=BCM=45°,AC=BC,AM=BM点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明ACEBCF是关键21、)补全的条形图见解析()级()【解析】试题分析:(1)根据级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级;(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人试题解析: (1)本次随机抽查的人数为:20÷40%=50(人)三级人数为:50-13-20-7=10.补图如下:(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有22、(1)证明见解析;(2). 【解析】试题分析:(1)证明:如图1,连接OB,由AB是0的切线,得到OBAB,由于CE丄AB,的OBCE,于是得到1=3,根据等腰三角形的性质得到1=2,通过等量代换得到结果(2)如图2,连接BD通过DBCCBE,得到比例式,列方程可得结果(1)证明:如图1,连接OB,AB是0的切线,OBAB,CE丄AB,OBCE,1=3,OB=OC,1=2,2=3,CB平分ACE;(2)如图2,连接BD,CE丄AB,E=90°,BC=5,CD是O的直径,DBC=90°,E=DBC,DBCCBE,BC2=CDCE,CD=,OC=,O的半径=考点:切线的性质23、(1)60;960;图见解析;(2)y1=60x240(4x20);(3)两人离小华家的距离相等时,x的值为2.4或12.【解析】(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.【详解】(1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,小新按此速度再走16分钟到达书店,则a=16×60=960米,小华到书店的时间为960÷40=24分钟,则y2与x的函数图象为:故小新的速度为60米/分,a=960;(2)当4x20时,设所求函数关系式为y1=kx+b(k0),将点(4,0),(20,960)代入得:,解得:,y1=60x240(4x20时)(3)由图可知,小新到小华家之前的函数关系式为:y=2406x,当两人分别在小华家两侧时,若两人到小华家距离相同,则2406x=40x,解得:x=2.4;当小新经过小华家并追上小华时,两人到小华家距离相同,则60x240=40x,解得:x=12;故两人离小华家的距离相等时,x的值为2.4或12.24、 (1),;(1),.【解析】(1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(1)作点A关于y轴的对称点A,作点B作关于x轴的对称点B,连接AB,交x轴于点P,交y轴于点Q,连接PB、QA利用待定系数法求出直线AB的解析式,进而求出P、Q两点坐标【详解】解:(1)把点A(-1,a)代入一次函数y=x+4,得:a=-1+4,解得:a=3,点A的坐标为(-1,3)把点A(-1,3)代入反比例函数y=,得:k=-3,反比例函数的表达式y=-联立两个函数关系式成方程组得: 解得: 或点B的坐标为(-3,1)故答案为3,(-3,1);(1)作点A关于y轴的对称点A,作点B作关于x轴的对称点B,连接AB,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示点B、B关于x轴对称,点B的坐标为(-3,1),点B的坐标为(-3,-1),PB=PB,点A、A关于y轴对称,点A的坐标为(-1,3),点A的坐标为(1,3),QA=QA,BP+PQ+QA=BP+PQ+QA=AB,值最小设直线AB的解析式为y=mx+n,把A,B两点代入得: 解得: 直线AB的解析式为y=x+1令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),令x=0,则y=1,点Q的坐标为(0,1)【点睛】本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键

    注意事项

    本文(江苏省泰州市泰兴市黄桥教育联盟重点名校2022-2023学年中考冲刺卷数学试题含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开