浙江省温州市八校2023年毕业升学考试模拟卷数学卷含解析.doc
-
资源ID:88307265
资源大小:861.50KB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙江省温州市八校2023年毕业升学考试模拟卷数学卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、的大小关系是()ABCD2如图,A、B、C是O上的三点,BAC30°,则BOC的大小是()A30°B60°C90°D45°3小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个4某一超市在“五一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A能中奖一次B能中奖两次C至少能中奖一次D中奖次数不能确定52018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力数字7600用科学记数法表示为()A0.76×104B7.6×103C7.6×104D76×1026如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A7海里/时B7海里/时C7海里/时D28海里/时7如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AAC=CDBOM=BMCA=ACDDA=BOD8下列四个多项式,能因式分解的是()Aa1Ba21Cx24yDx26x99下列各式计算正确的是( )Aa22a33a5Baa2a3Ca6÷a2a3D(a2)3a510如图,在等腰直角ABC中,C=90°,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是()ABCD二、填空题(共7小题,每小题3分,满分21分)11已知圆锥的底面半径为3cm,侧面积为15cm2,则这个圆锥的侧面展开图的圆心角 °12如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为12,那么坝底的长度等于_米(结果保留根号)13定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则_14如图,在直角坐标平面xOy中,点A坐标为,AB与x轴交于点C,那么AC:BC的值为_15分解因式:_16如图,以锐角ABC的边AB为直径作O,分别交AC,BC于E、D两点,若AC14,CD4,7sinC3tanB,则BD_17若n边形的内角和是它的外角和的2倍,则n= .三、解答题(共7小题,满分69分)18(10分)解分式方程: - = 19(5分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?20(8分)如图,在Rt中,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长21(10分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PAy轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”(1)若点P(4,2),则点P的“旋转对应点”P'的坐标为 ;若点P的“旋转对应点”P'的坐标为(5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P'的坐标为 ;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'QQ';(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标22(10分)如图,在RtABC中,C90°,以BC为直径的O交AB于点D,DE交AC于点E,且AADE(1)求证:DE是O的切线;(2)若AD16,DE10,求BC的长23(12分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D直线y=2x1经过抛物线上一点B(2,m)且与y轴交于点C,与抛物线的对称轴交于点F(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若SADP=SADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形若能,请直接写出点M的运动时间t的值;若不能,请说明理由24(14分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图,不论t如何变化,DEF始终为等边三角形(2)如图过点E作EQAB,交AC于点Q,设AEQ的面积为S,求S与t的函数关系式及t为何值时AEQ的面积最大?求出这个最大值(3)在(2)的条件下,当AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】首先求出二次函数的图象的对称轴x=2,且由a=10,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以总结可得故选C点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质2、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC=30°,BOC=2BAC =60°(同弧所对的圆周角是圆心角的一半),故选B【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一4、D【解析】由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生【详解】解:根据随机事件的定义判定,中奖次数不能确定故选D【点睛】解答此题要明确概率和事件的关系:,为不可能事件;为必然事件;为随机事件5、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:76007.6×103,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中, 所以在中, 所以所以解得:故选A.7、D【解析】根据垂径定理判断即可【详解】连接DA直径AB弦CD,垂足为M,CM=MD,CAB=DAB2DAB=BOD,CAD=BOD故选D【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键8、D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可试题解析:x2-6x+9=(x-3)2故选D考点:2因式分解-运用公式法;2因式分解-提公因式法9、B【解析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解【详解】A.a2与2a3不是同类项,故A不正确;B.aa2a3,正确;C原式a4,故C不正确;D原式a6,故D不正确;故选:B【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.10、B【解析】先根据翻折变换的性质得到DEFAEF,再根据等腰三角形的性质及三角形外角的性质可得到BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解【详解】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45°,由三角形外角性质得CDF+45°=BED+45°,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,sinBED=sinCDF=故选B【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:根据圆锥的侧面积公式S=rl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数解:侧面积为15cm2,圆锥侧面积公式为:S=rl=×3×l=15,解得:l=5,扇形面积为15=,解得:n=1,侧面展开图的圆心角是1度故答案为1考点:圆锥的计算12、【解析】过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长【详解】如图,作,垂足分别为点E,F,则四边形是矩形由题意得,米,米,斜坡的坡度为12,在中,米在RtDCF中,斜坡的坡度为12,米,(米)坝底的长度等于米故答案为【点睛】此题考查了解直角三角形的应用坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义13、1【解析】根据两点间的距离公式可求m的值.【详解】依题意有,解得,故答案为:1【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键14、【解析】过点A作ADy轴,垂足为D,作BEy轴,垂足为E.先证ADOOEB,再根据OAB30°求出三角形的相似比,得到OD:OE=2,根据平行线分线段成比例得到AC:BC=OD:OE=2=【详解】解:如图所示:过点A作ADy轴,垂足为D,作BEy轴,垂足为E.OAB30°,ADE90°,DEB90°DOA+BOE90°,OBE+BOE90°DOA=OBEADOOEBOAB30°,AOB90°,OAOB=点A坐标为(3,2)AD=3,OD=2ADOOEBOEOCADBE根据平行线分线段成比例得:AC:BC=OD:OE=2=故答案为.【点睛】本题考查三角形相似的证明以及平行线分线段成比例.15、【解析】先提取公因式,再利用平方差公式分解因式即可.【详解】故答案为:.【点睛】本题考查了分解因式,熟练掌握因式法、公式法、十字相乘法、分组分解法的区别,根据题目选择合适的方法是解题的关键.16、1【解析】如图,连接AD,根据圆周角定理可得ADBC在RtADC中,sinC= ;在RtABD中,tanB=已知7sinC=3tanB,所以7×=3×,又因AC14,即可求得BD=1 点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键17、6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2), 外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=6三、解答题(共7小题,满分69分)18、方程无解【解析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可【详解】解:方程的两边同乘(x1)(x1),得:, ,此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:去分母;解整式方程;验根.19、甲、乙两种节能灯分别购进40、60只;商场获利1300元【解析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得 ,答:甲、乙两种节能灯分别购进40、60只(2)商场获利元,答:商场获利1300元【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量20、(1)ADE=90°;(2)ABE的周长=1【解析】试题分析:(1)是线段垂直平分线的做法,可得ADE=90°(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以ABE的周长为AB+BE+AE=AB+BC=1试题解析:(1)由题意可知MN是线段AC的垂直平分线,ADE=90°;(2)在RtABC中,B=90°,AB=3,AC=5,BC=4,MN是线段AC的垂直平分线,AE=CE,ABE的周长=AB+(AE+BE)=AB+BC=3+4=1考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长21、(1)(2,2+2),(10,165),(,ba);(2)见解析;(3)直线PP'与x轴的交点坐标(,0)【解析】(1)当P(-4,2)时,OA=2,PA=4,由旋转知,P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;当P(a,b)时,同的方法得,即可得出结论;(2)先判断出BQQ'=60°,进而得出PAP'=PP'A=60°,即可得出P'QQ'=PAP'=60°,即可得出结论;(3)先确定出yPP'=x+3,即可得出结论【详解】解:(1)如图1,当P(4,2)时,PAy轴,PAH=90°,OA=2,PA=4,由旋转知,P'A=4,PAP'=60°,P'AH=30°,在RtP'AH中,P'H=P'A=2,AH=P'H=2,OH=OA+AH=2+2,P'(2,2+2),当P'(5,16)时,在RtP'AH中,P'AH=30°,P'H=5,P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OHAH=165,P(10,165),当P(a,b)时,同的方法得,P'(,ba),故答案为:(2,2+2),(10,165),(,ba);(2)如图2,过点Q作QBy轴于B,BQQ'=60°,由题意知,PAP'是等边三角形,PAP'=PP'A=60°,QBy轴,PAy轴,QBPA,P'QQ'=PAP'=60°,P'QQ'=60°=PP'A,PP'QQ';(3)设yPP'=kx+b',由题意知,k=,直线经过点(,6),b'=3,yPP'=x+3,令y=0,x=,直线PP'与x轴的交点坐标(,0)【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义22、(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出EDB=EBD,ODB=OBD,即可求出ODE=90°,根据切线的判定推出即可(2)首先证明AC=2DE=20,在RtADC中,DC=12,设BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题【详解】(1)证明:连结OD,ACB=90°,A+B=90°,又OD=OB,B=BDO,ADE=A,ADE+BDO=90°,ODE=90°DE是O的切线;(2)连结CD,ADE=A,AE=DEBC是O的直径,ACB=90°EC是O的切线DE=ECAE=EC,又DE=10,AC=2DE=20,在RtADC中,DC=设BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2202,x2+122=(x+16)2202,解得x=9,BC=.【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.23、(1);(2)(,1)( ,1);(3)存在,【解析】试题分析:(1)将x=-2代入y=-2x-1即可求得点B的坐标,根据抛物线过点A、O、B即可求出抛物线的方程.(2)根据题意,可知ADP和ADC的高相等,即点P纵坐标的绝对值为1,所以点P的纵坐标为 ,分别代入中求解,即可得到所有符合题意的点P的坐标(3)由抛物线的解析式为 ,得顶点E(2,1),对称轴为x=2;点F是直线y=2x1与对称轴x=2的交点,求出F(2,1),DF=1又由A(4,0),根据勾股定理得 然后分4种情况求解.点睛:(1)首先求出点B的坐标和m的值,然后利用待定系数法求出抛物线的解析式;(2)ADP与ADC有共同的底边AD,因为面积相等,所以AD边上的高相等,即为1;从而得到点P的纵坐标为1,再利用抛物线的解析式求出点P的纵坐标;(3)如解答图所示,在点M的运动过程中,依次出现四个菱形,注意不要漏解针对每一个菱形,分别进行计算,求出线段MF的长度,从而得到运动时间t的值24、(1)证明见解析;(2)当t=3时,AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)【解析】(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;【详解】(1)如图中,C(6,0),BC=6在等边三角形ABC中,AB=BC=AC=6,A=B=C=60°,由题意知,当0t6时,AD=BE=CF=t,BD=CE=AF=6t,ADFCFEBED(SAS),EF=DF=DE,DEF是等边三角形,不论t如何变化,DEF始终为等边三角形;(2)如图中,作AHBC于H,则AH=ABsin60°=3,SAEC=×3×(6t)=,EQAB,CEQABC,=()2=,即SCEQ=SABC=×9=,SAEQ=SAECSCEQ=(t3)2+,a=0,抛物线开口向下,有最大值,当t=3时,AEQ的面积最大为cm2,(3)如图中,由(2)知,E点为BC的中点,线段EQ为ABC的中位线,当AD为菱形的边时,可得P1(3,0),P3(6,3),当AD为对角线时,P2(0,3),综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3)【点睛】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题