浙江省湖州市安吉县2023届中考数学考试模拟冲刺卷含解析.doc
-
资源ID:88307297
资源大小:886KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙江省湖州市安吉县2023届中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,一次函数y1x与二次函数y2ax2bxc图象相交于P、Q两点,则函数yax2(b1)xc的图象可能是( )ABCD2将一副三角板(A30°)按如图所示方式摆放,使得ABEF,则1等于()A75°B90°C105°D115°3下列实数中是无理数的是()ABCD4已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k0)的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3 By2y1y3 Cy3y2y1 Dy3y1y25如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是( )A点AB点BC点CD点D6如图,O的直径AB与弦CD的延长线交于点E,若DE=OB,AOC=84°,则E等于()A42°B28°C21°D20°7有三张正面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD8如图是反比例函数(k为常数,k0)的图象,则一次函数的图象大致是( )ABCD9已知圆心在原点O,半径为5的O,则点P(-3,4)与O的位置关系是( )A在O内 B在O上C在O外 D不能确定10如图由四个相同的小立方体组成的立体图像,它的主视图是( )ABCD11下列运算正确的是()Aa3a=2aB(ab2)0=ab2C=D×=912如图,O 是等边ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )ABC2D3二、填空题:(本大题共6个小题,每小题4分,共24分)13一元二次方程x(x2)=x2的根是_14方程的根是_15不等式组的解集是_16反比例函数的图象经过点和,则 _ 17若关于x的二次函数yax2+a2的最小值为4,则a的值为_18如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,交于点求的值20(6分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程21(6分)已知关于x,y的二元一次方程组的解为,求a、b的值22(8分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D求a,b的值及反比例函数的解析式;若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由23(8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm点A、C、E在同一条直线上,且CAB=75°(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm)24(10分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A非常了解,B比较了解,C基本了解,D不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率25(10分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.26(12分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB5米,且A、B、P三点在一直线上请根据以上数据求广告牌的宽MN的长(参考数据:sin58°0.85,cos58°0.53,tan58°1.1,sin31°0.52,cos31°0.86,tan31°0.1)27(12分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B求k和b的值;求OAB的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=-0,即可进行判断【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,x=ax2+bx+c,ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,方程ax2+(b-1)x+c=0有两个正实数根函数y=ax2+(b-1)x+c与x轴有两个交点,又-0,a0-=-+0函数y=ax2+(b-1)x+c的对称轴x=-0,A符合条件,故选A2、C【解析】分析:依据ABEF,即可得BDE=E=45°,再根据A=30°,可得B=60°,利用三角形外角性质,即可得到1=BDE+B=105°详解:ABEF,BDE=E=45°,又A=30°,B=60°,1=BDE+B=45°+60°=105°,故选C点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等3、B【解析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】A、是分数,属于有理数;B、是无理数;C、=3,是整数,属于有理数;D、-是分数,属于有理数;故选B【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数4、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1x20x3,y3y1y2;故选D.考点:反比例函数的性质.5、B【解析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】, ,因为0.2680.7321.268,所以 表示的点与点B最接近,故选B.6、B【解析】利用OB=DE,OB=OD得到DO=DE,则E=DOE,根据三角形外角性质得1=DOE+E,所以1=2E,同理得到AOC=C+E=3E,然后利用E=AOC进行计算即可【详解】解:连结OD,如图,OB=DE,OB=OD,DO=DE,E=DOE,1=DOE+E,1=2E,而OC=OD,C=1,C=2E,AOC=C+E=3E,E=AOC=×84°=28°故选:B【点睛】本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)也考查了等腰三角形的性质7、C【解析】画树状图得:共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】运用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件8、B【解析】根据图示知,反比例函数的图象位于第一、三象限,k>0,一次函数y=kxk的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,一次函数y=kxk的图象经过第一、三、四象限;故选:B.9、B.【解析】试题解析:OP=5,根据点到圆心的距离等于半径,则知点在圆上故选B考点:1.点与圆的位置关系;2.坐标与图形性质10、D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐故选D.11、D【解析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案【详解】解:A、a3a=2a,故此选项错误;B、(ab2)0=1,故此选项错误;C、故此选项错误;D、×=9,正确故选D【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键12、D【解析】根据等边三角形的性质得到A=60°,再利用圆周角定理得到BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可【详解】ABC 为等边三角形,A=60°,BOC=2A=120°,图中阴影部分的面积= =3 故选D【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得BOC=120°是解决问题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1或1【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可得答案【详解】x(x1)=x1,x(x1)(x1)=0,(x1)(x1)=0,x1=0,x1=0,x1=1,x1=1,故答案为:1或1【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键14、1【解析】把无理方程转化为整式方程即可解决问题【详解】两边平方得到:2x1=1,解得:x=1,经检验:x=1是原方程的解故答案为:1【点睛】本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验15、2x1【解析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集【详解】由得x2,由得x1,不等式组的解集为2x1故答案为:2x1【点睛】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)16、-1【解析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值【详解】解:反比例函数y=的图象经过点(1,6),6=,解得k=6,反比例函数的解析式为y=点(m,-3)在此函数图象上上,-3=,解得m=-1故答案为-1【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键17、1【解析】根据二次函数的性质列出不等式和等式,计算即可【详解】解:关于x的二次函数y=ax1+a1的最小值为4,a1=4,a0,解得,a=1,故答案为1【点睛】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键18、【解析】由正六边形的性质得出AB=BC=AF,ABC=BAF=120°,由等腰三角形的性质得出ABF=BAC=BCA=30°,证出AG=BG,CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案【详解】六边形ABCDEF是正六边形,ABBCAF,ABCBAF120°,ABFBACBCA30°,AGBG,CBG90°,CG2BG2AG,;故答案为:【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由A=ACD,AOB=COD可证ABOCDO,从而;再在RtABC和RtBCD中分别求出AB和CD的长,代入即可.解:ABC=BCD=90°,ABCD,A=ACD,ABOCDO,在RtABC中,ABC=90°,A=45°,BC=1,AB=1在RtBCD中,BCD =90°,D=30°,BC=1,CD=,20、 (1)y2x2(2)这位乘客乘车的里程是15km【解析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k0),运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值【详解】(1)由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k0),由函数图象,得,解得: 故y与x的函数关系式为:y=2x+2; (2)32元>8元,当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.21、或【解析】把代入二元一次方程组得到关于a,b的方程组,经过整理,得到关于b的一元二次方程,解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案【详解】把代入二元一次方程组得:,由得:a=1+b,把a=1+b代入,整理得:b2+b-2=0,解得:b= -2或b=1,把b= -2代入得:a+2=1,解得:a= -1,把b=1代入得:a-1=1,解得:a=2,即或【点睛】本题考查了二元一次方程组的解,正确掌握代入法是解题的关键22、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP×3×|n1|,SBDP×1×|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k1×33,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC×|xPxA|×3×|n1|,SBDPBD×|xBxP|×1×|3n|,SACPSBDP,×3×|n1|×1×|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键23、63cm.【解析】试题分析:(1)在Rt ACD,AC45,DC60,根据勾股定理可得AD 即可得到AD的长度;(2)过点E作EF AB,垂足为F,由AEAC+CE,在直角 EFA中,根据EFAEsin75°可求出EF的长度,即为点E到车架档AB的距离;试题解析:24、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为【解析】【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;(3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C所对应扇形的圆心角度数是360°×=90°, 故答案为60、90°;(2)D类型人数为60×5%=3,则B类型人数为60(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.25、(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论详解:(1)为的中点, 反比例函数图象过点,设图象经过、两点的一次函数表达式为:,解得,(2), ,设点坐标为,则点坐标为 两点在图象上,解得:,点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式解题的关键是求出点A、E、F的坐标26、1.8米【解析】设PA=PN=x,RtAPM中求得=1.6x, 在RtBPM中,解得x=3,MN=MP-NP=0.6x=1.8.【详解】在RtAPN中,NAP=45°,PA=PN,在RtAPM中,,设PA=PN=x,MAP=58°,=1.6x,在RtBPM中,,MBP=31°,AB=5, x=3,MN=MP-NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.27、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k=2×5=10把x=2,y=5代入y=x+b,得b=3(2)、y=x+3 当y=0时,x=-3, OB=3 S=×3×5=7.5考点:一次函数与反比例函数的综合问题.