泉州第五中学2023年高三第一次调研测试数学试卷含解析.doc
2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则“”是“的展开式中项的系数为90”的( )A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件2下列四个图象可能是函数图象的是( )ABCD3已知圆与抛物线的准线相切,则的值为()A1B2CD44如图示,三棱锥的底面是等腰直角三角形,且,则与面所成角的正弦值等于( )ABCD5已知直线过圆的圆心,则的最小值为( )A1B2C3D46设函数的导函数,且满足,若在中,则( )ABCD7设递增的等比数列的前n项和为,已知,则( )A9B27C81D8函数在的图象大致为ABCD9函数在内有且只有一个零点,则a的值为( )A3B3C2D210已知,是两条不重合的直线,是一个平面,则下列命题中正确的是( )A若,则B若,则C若,则D若,则11我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( )A400米B480米C520米D600米12已知菱形的边长为2,则()A4B6CD二、填空题:本题共4小题,每小题5分,共20分。13如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、以及、一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为_参考数据:;)14已知集合,其中,.且,则集合中所有元素的和为_.15如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_16已知函数.若在区间上恒成立.则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.18(12分)在中,角,所对的边分别为,且求的值;设的平分线与边交于点,已知,求的值.19(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.20(12分)在中,角、的对边分别为、,且.(1)若,求的值;(2)若,求的值.21(12分)已知两数(1)当时,求函数的极值点;(2)当时,若恒成立,求的最大值22(10分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,记的最大值与最小值分别为M,m,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求得的二项展开式的通项为,令时,可得项的系数为90,即,求得,即可得出结果.【详解】若则二项展开式的通项为,令,即,则项的系数为,充分性成立;当的展开式中项的系数为90,则有,从而,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.2、C【解析】首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,为奇函数,图象关于原点对称,的图象关于点成中心对称.可排除A、D项.当时,B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.3、B【解析】因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.【详解】请在此输入详解!4、A【解析】首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,可知,同时易知,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.5、D【解析】圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值【详解】圆的圆心为,由题意可得,即,则,当且仅当且即时取等号,故选:【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题6、D【解析】根据的结构形式,设,求导,则,在上是增函数,再根据在中,得到,利用余弦函数的单调性,得到,再利用的单调性求解.【详解】设,所以 ,因为当时,即,所以,在上是增函数,在中,因为,所以,因为,且,所以,即,所以,即故选:D【点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.7、A【解析】根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.8、A【解析】因为,所以排除C、D当从负方向趋近于0时,可得.故选A9、A【解析】求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,在单调递增,且,在不存在零点;若,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.10、D【解析】利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.11、B【解析】根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.12、B【解析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果【详解】如图所示,菱形形的边长为2,且,故选B【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【点睛】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.14、2889【解析】先计算集合中最小的数为,最大的数,可得,求和即得解.【详解】当时,集合中最小数;当时,得到集合中最大的数; 故答案为:2889【点睛】本题考查了数列与集合综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.15、【解析】设,在中利用正弦定理得出关于的函数,从而可得的最小值【详解】解:设,则,在中,由正弦定理可得,即,当即时,取得最小值故答案为【点睛】本题考查正弦定理解三角形的应用,属中档题16、【解析】首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.【详解】解:且,即解得,即因为在区间上恒成立,解得即故答案为:【点睛】本题考查一元二次不等式及函数的综合问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解析】由数列为“数列”可得,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,两式相减得,据此可得,当时,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得, 在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以. (2)由题意得,故,两式相减得 所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列, 所以 因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,把分别代入不等式可得,,所以存在数列符合题意,的所有值为.【点睛】本题考查数列的新定义、等比数列的通项公式和数列递推公式的运用;考查运算求解能力、逻辑推理能力和对新定义的理解能力;通过反复利用递推公式,得到数列为常数列是求解本题的关键;属于综合型强、难度大型试题.18、;.【解析】利用正弦定理化简求值即可;利用两角和差的正弦函数的化简公式,结合正弦定理求出的值.【详解】解:,由正弦定理得:,又,为三角形内角,故,则,故,;(2)平分,设,则,,则,又,则在中,由正弦定理:,.【点睛】本题考查正弦定理和两角和差的正弦函数的化简公式,二倍角公式,考查运算能力,属于基础题.19、(1)(2)证明见解析【解析】(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.(2),因为,所以要证,只需证,即证,因为,所以只要证,即证,即证,因为,所以只需证,因为,所以成立,所以.【点睛】本小题主要考查绝对值不等式的解法,考查分析法证明不等式,考查基本不等式的运用,属于中档题.20、(1);(2).【解析】(1)利用余弦定理得出关于的二次方程,结合,可求出的值;(2)利用两角和的余弦公式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.【详解】(1)在中,由余弦定理得,即, 解得或(舍),所以;(2)由及得, 所以,又因为,所以,从而,所以.【点睛】本题考查利用余弦定理解三角形,同时也考查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.21、(1)唯一的极大值点1,无极小值点(2)1【解析】(1)求出导函数,求得的解,确定此解两侧导数值的正负,确定极值点;(2)问题可变形为恒成立,由导数求出函数的最小值,时,无最小值,因此只有,从而得出的不等关系,得出所求最大值【详解】解:(1)定义域为,当时,令得,当所以在上单调递增,在上单调递减,所以有唯一的极大值点,无极小值点(2)当时,若恒成立,则恒成立,所以恒成立,令,则,由题意,函数在上单调递减,在上单调递增,所以,所以所以,所以,故的最大值为1【点睛】本题考查用导数求函数极值,研究不等式恒成立问题在求极值时,由确定的不一定是极值点,还需满足在两侧的符号相反不等式恒成立深深转化为求函数的最值,这里分离参数法起关键作用22、(1);(2)【解析】(1)求导.根据单调,转化为对恒成立求解(2)由(1)知,是的两个根,不妨设,令. 根据,确定,将转化为. 令,用导数法研究其单调性求最值.【详解】(1)的定义域为,.因为单调,所以对恒成立,所以,恒成立,因为,当且仅当时取等号,所以;(2)由(1)知,是的两个根.从而,不妨设,则. 因为,所以t为关于a的减函数,所以. 令,则. 因为当时,在上为减函数.所以当时,.从而,所以在上为减函数.所以当时,.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.