浙江省金华市六校2022-2023学年中考数学模试卷含解析.doc
-
资源ID:88307639
资源大小:501KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙江省金华市六校2022-2023学年中考数学模试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小根据他们的描述,姜老师给出的这个函数表达式可能是()ABCD2将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()Ay=(x+2)25 By=(x+2)2+5 Cy=(x2)25 Dy=(x2)2+53如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB2,AE,则点G 到BE的距离是( )ABCD4“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A3B4C5D65一元二次方程x2-2x=0的解是( )Ax1=0,x2=2Bx1=1,x2=2Cx1=0,x2=-2Dx1=1,x2=-26如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PMCD,PNBC,则线段MN的长度的最小值为( )ABCD17如图是由四个小正方体叠成的一个几何体,它的左视图是( )ABCD8二次函数yax2+bx+c(a0)和正比例函数yx的图象如图所示,则方程ax2+(b+ )x+c0(a0)的两根之和()A大于0B等于0C小于0D不能确定9tan60°的值是( )ABCD10下列实数中,为无理数的是()ABC5D0.315611关于x的不等式组无解,那么m的取值范围为( )Am1Bm<1C1<m0D1m<012如图,二次函数yax2bxc(a0)的图象经过点A,B,C现有下面四个推断:抛物线开口向下;当x=2时,y取最大值;当m<4时,关于x的一元二次方程ax2bxc=m必有两个不相等的实数根;直线y=kx+c(k0)经过点A,C,当kx+c> ax2bxc时,x的取值范围是4<x<0;其中推断正确的是 ( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13方程3x25x+2=0的一个根是a,则6a210a+2=_14分解因式:= 15如图,点A、B、C、D在O上,O点在D的内部,四边形OABC为平行四边形,则OAD+OCD= °.16如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y(x0)的图象经过菱形OABC中心E点,则k的值为_17如图,在ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=_18如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、 于点若,则的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°1.4,tan35°0.7,sin55°0.8)20(6分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC(1)求证:四边形ABCD是矩形;(1)若GEF的面积为1求四边形BCFE的面积;四边形ABCD的面积为 21(6分)计算:|+(2017)02sin30°+3122(8分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22x1x2=8,求m的值23(8分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°求C处到树干DO的距离CO(结果精确到1米)(参考数据:,)24(10分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;(2)函数y=+1的图象与x轴、y轴交点的情况是: ;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 25(10分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?26(12分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案27(12分)在RtABC中,ACB90°,以点A为圆心,AC为半径,作A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交A于点F,连接AF、BF、DF(1)求证:BF是A的切线(2)当CAB等于多少度时,四边形ADFE为菱形?请给予证明参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.2、A【解析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(2,1),所以,平移后的抛物线的解析式为y=(x+2)21故选:A【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键3、A【解析】根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得BEG与AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离【详解】连接GB、GE,由已知可知BAE=45°又GE为正方形AEFG的对角线,AEG=45°ABGEAE=4,AB与GE间的距离相等,GE=8,SBEGSAEGSAEFG1过点B作BHAE于点H,AB=2,BHAHHE3BE2设点G到BE的距离为hSBEGBEh×2×h1h即点G到BE的距离为故选A【点睛】本题主要考查了几何变换综合题涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强解题的关键是运用等积式及四点共圆的判定及性质求解4、C【解析】如图所示,(a+b)2=21a2+2ab+b2=21,大正方形的面积为13,2ab=2113=8,小正方形的面积为138=1故选C考点:勾股定理的证明5、A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1故选A考点:解一元二次方程-因式分解法6、B【解析】分析:由于点P在运动中保持APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可详解: 由于点P在运动中保持APD=90°, 点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在RtQDC中,QC=, CP=QCQP=,故选B点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型解决这个问题的关键是根据圆的知识得出点P的运动轨迹7、A【解析】试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是故选A考点:简单组合体的三视图8、C【解析】设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论【详解】解:设的两根为x1,x2,由二次函数的图象可知, 设方程的两根为m,n,则 .故选C【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键9、A【解析】根据特殊角三角函数值,可得答案【详解】tan60°=故选:A【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键10、B【解析】根据无理数的定义解答即可.【详解】选项A、是分数,是有理数;选项B、是无理数;选项C、5为有理数;选项D、0.3156是有理数;故选B【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.11、A【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.【详解】,解不等式得:x<m,解不等式得:x>-1,由于原不等式组无解,所以m-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.12、B【解析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案【详解】解:由图象可知,抛物线开口向下,所以正确; 若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以错误,从而排除掉A和D; 剩下的选项中都有,所以是正确的; 易知直线y=kx+c(k0)经过点A,C,当kx+cax2+bx+c时,x的取值范围是x-4或x0,从而错误故选:B【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题二、填空题:(本大题共6个小题,每小题4分,共24分)13、-1【解析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可【详解】解:方程3x1-5x+1=0的一个根是a,3a1-5a+1=0,3a1-5a=-1,6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1故答案是:-1【点睛】此题主要考查了方程解的定义此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值14、a(a+2)(a-2)【解析】15、1【解析】试题分析:四边形OABC为平行四边形,AOC=B,OAB=OCB,OAB+B=180°四边形ABCD是圆的内接四边形,D+B=180°又DAOC,3D=180°,解得D=1°OAB=OCB=180°-B=1°OAD+OCD=31°-(D+B+OAB+OCB)=31°-(1°+120°+1°+1°)=1°故答案为1°考点:平行四边形的性质;圆内接四边形的性质16、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.17、3【解析】分析:由已知条件易得:EFAB,且EF:AB=1:2,从而可得CEFCAB,且相似比为1:2,设SCEF=x,根据相似三角形的性质可得方程:,解此方程即可求得EFC的面积.详解:在ABC中,点E,F分别是AC,BC的中点,EF是ABC的中位线,EFAB,EF:AB=1:2,CEFCAB,SCEF:SCAB=1:4,设SCEF=x,SCAB=SCEF+S四边形ABFE,S四边形ABFE=9,解得:,经检验:是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.18、13【解析】根据正方形的性质得出AD=AB,BAD=90°,根据垂直得出DEA=AFB=90°,求出EDA=FAB,根据AAS推出AEDBFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】ABCD是正方形(已知),AB=AD,ABC=BAD=90°;又FAB+FBA=FAB+EAD=90°,FBA=EAD(等量代换);BFa于点F,DEa于点E,在RtAFB和RtAED中,AFBAED(AAS),AF=DE=8,BF=AE=5(全等三角形的对应边相等),EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出AEDBFA是解此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、B、C两地的距离大约是6千米【解析】过B作BDAC于点D,在直角ABD中利用三角函数求得BD的长,然后在直角BCD中利用三角函数求得BC的长【详解】解:过B作于点D在中,千米,中,千米,千米答:B、C两地的距离大约是6千米【点睛】此题考查了方向角问题此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解20、(1)证明见解析;(1)16;14;【解析】(1)根据平行四边形的性质得到ADBC,AB=DC,ABCD于是得到BE=CF,根据全等三角形的性质得到A=D,根据平行线的性质得到A+D=180°,由矩形的判定定理即可得到结论;(1)根据相似三角形的性质得到,求得GBC的面积为18,于是得到四边形BCFE的面积为16;根据四边形BCFE的面积为16,列方程得到BCAB=14,即可得到结论【详解】(1)证明:GB=GC,GBC=GCB,在平行四边形ABCD中,ADBC,AB=DC,ABCD,GB-GE=GC-GF,BE=CF,在ABE与DCF中,ABEDCF,A=D,ABCD,A+D=180°,A=D=90°,四边形ABCD是矩形;(1)EFBC,GFEGBC,EF=AD,EF=BC,GEF的面积为1,GBC的面积为18,四边形BCFE的面积为16,;四边形BCFE的面积为16,(EF+BC)AB=×BCAB=16,BCAB=14,四边形ABCD的面积为14,故答案为:14【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得GFEGBC是解题的关键21、 【解析】分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可详解:原式=+12×+=点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键22、 (1);(2)m=【解析】(1)根据已知和根的判别式得出=224×1×2m=48m0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=2,x1x2=2m,把x1+xx12+x22x1x2=8变形为(x1+x2)23x1x2=8,代入求出即可【详解】(1)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,=224×1×2m=48m0,解得:即m的取值范围是(2)x1,x2是一元二次方程x2+2x+2m=0的两个根,x1+x2=2,x1x2=2m,x12+x22x1x2=8,(x1+x2)23x1x2=8,(2)23×2m=8,解得:【点睛】本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键23、解:设OC=x,在RtAOC中,ACO=45°,OA=OC=x在RtBOC中,BCO=30°,AB=OAOB=,解得OC=5米答:C处到树干DO的距离CO为5米【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值【分析】设OC=x,在RtAOC中,由于ACO=45°,故OA=x,在RtBOC中,由于BCO=30°,故,再根据AB=OAOB=2即可得出结论24、(1),1;(2)与x轴交于(1,0),与y轴没交点;(3)答案不唯一,如:y=+1.【解析】(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案【详解】(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,故答案为:,1;(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(1,0),与y轴没交点,故答案为:与x轴交于(1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=+1, 答案不唯一,故答案为:y=+1【点睛】本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键25、规定日期是6天【解析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解【详解】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得 解方程可得x=6,经检验x=6是分式方程的解答:规定日期是6天26、(1)甲种材料每千克25元,乙种材料每千克35元(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低【解析】试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元,依题意得:解得:答:甲种材料每千克25元, 乙种材料每千克35元. (2)生产B产品a件,生产A产品(60-a)件. 依题意得:解得:a的值为非负整数 a=39、40、41、42 共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件(3)、答:生产A产品21件,B产品39件成本最低. 设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60a)+(35×+25×3+50)a=55a+10500k=55>0 W随a增大而增大当a=39时,总成本最低.考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.27、(1)证明见解析;(2)当CAB=60°时,四边形ADFE为菱形;证明见解析;【解析】分析(1)首先利用平行线的性质得到FAB=CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;(2)当CAB=60°时,四边形ADFE为菱形,根据CAB=60°,得到FAB=CAB=CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形详解:(1)证明:EFABFAB=EFA,CAB=EAE=AFEFA =EFAB=CABAC=AF,AB=ABABCABF AFB=ACB=90°, BF是A的切线. (2)当CAB=60°时,四边形ADFE为菱形.理由:EFABE=CAB=60°AE=AFAEF是等边三角形AE=EF,AE=ADEF=AD四边形ADFE是平行四边形AE=EF平行四边形ADFE为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大