江苏省盐城市滨海县蔡桥初级中学2023届高三最后一卷数学试卷含解析.doc
-
资源ID:88307703
资源大小:2.05MB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省盐城市滨海县蔡桥初级中学2023届高三最后一卷数学试卷含解析.doc
2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD2设是虚数单位,复数()ABCD3用一个平面去截正方体,则截面不可能是( )A正三角形B正方形C正五边形D正六边形4己知全集为实数集R,集合A=x|x2 +2x-8>0,B=x|log2x<1,则等于( )A4,2B4,2)C(4,2)D(0,2)5设命题p:>1,n2>2n,则p为( )ABCD6已知为一条直线,为两个不同的平面,则下列说法正确的是( )A若,则B若,则C若,则D若,则7已知,若,则( )ABCD8空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是( )A这20天中指数值的中位数略高于100B这20天中的中度污染及以上(指数)的天数占C该市10月的前半个月的空气质量越来越好D总体来说,该市10月上旬的空气质量比中旬的空气质量好9已知向量,且,则m=( )A8B6C6D810某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )A324B522C535D57811已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( )A该超市2018年的12个月中的7月份的收益最高B该超市2018年的12个月中的4月份的收益最低C该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元12如图,在直角梯形ABCD中,ABDC,ADDC,ADDC2AB,E为AD的中点,若,则的值为()A BCD二、填空题:本题共4小题,每小题5分,共20分。13某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为_.14某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值_15己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,垂足为,若在双曲线上,则双曲线的离心率为_16已知复数满足(为虚数单位),则复数的实部为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的左焦点坐标为,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.(1)求椭圆的方程;(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.18(12分)已知在四棱锥中,平面,在四边形中,为的中点,连接,为的中点,连接.(1)求证:.(2)求二面角的余弦值.19(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E(1)求证:四边形ACC1A1为矩形;(2)求二面角E-B1C-A1的平面角的余弦值20(12分)若关于的方程的两根都大于2,求实数的取值范围21(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.22(10分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.2、D【解析】利用复数的除法运算,化简复数,即可求解,得到答案【详解】由题意,复数,故选D【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题3、C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C考点:平面的基本性质及推论4、D【解析】求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【详解】解:由x2 +2x-8>0,得x-4或x2,A=x|x2 +2x-8>0x| x-4或x2,由log2x<1,x0,得0x2,B=x|log2x<1 x |0x2,则,.故选:D.【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.5、C【解析】根据命题的否定,可以写出:,所以选C.6、D【解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确.故选D.7、B【解析】由平行求出参数,再由数量积的坐标运算计算【详解】由,得,则,所以故选:B【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键8、C【解析】结合题意,根据题目中的天的指数值,判断选项中的命题是否正确.【详解】对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确.对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确.对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误.对于,由图可知该市月上旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确.故选:【点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.9、D【解析】由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案【详解】,又,3×4+(2)×(m2)0,解得m1故选D【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题10、D【解析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.11、D【解析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.12、B【解析】建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB1,则CDAD2,所以C(2,0),A(0,2),B(1,2),E(0,1), (2,2)(2,1)(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据茎叶图求出平均数和中位数,然后可得结果.【详解】剩下的四个数为83,85,87,95,且这四个数的平均数,这四个数的中位数为,则所剩数据的平均数与中位数的差为.【点睛】本题主要考查茎叶图的识别和统计量的计算,侧重考查数据分析和数学运算的核心素养.14、3【解析】 由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为和,高为, 如图所示,平面, 所以底面积为, 几何体的高为,所以其体积为 点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解15、【解析】由,则,所以点, 因为,可得,点坐标化简为,代入双曲线的方程求解.【详解】设,则,即,解得,则,所以,即,代入双曲线的方程可得,所以 所以解得.故答案为:【点睛】本题主要考查了直线与双曲线的位置关系,及三角恒等变换,还考查了运算求解的能力和数形结合的思想,属于中档题.16、【解析】利用复数的概念与复数的除法运算计算即可得到答案.【详解】,所以复数的实部为2.故答案为:2【点睛】本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线过定点【解析】(1),再由,解方程组即可;(2)设,由,得,由直线MN的方程与椭圆方程联立得到根与系数的关系,代入计算即可.【详解】(1)由题意知:,又,且解得,椭圆方程为,(2)当直线的斜率存在时,设其方程为,设,由,得.则,(*)由,得,整理可得(*)代入得,整理可得,又,即,直线过点当直线的斜率不存在时,设直线的方程为,其中,由,得,所以当直线的斜率不存在时,直线也过定点综上所述,直线过定点.【点睛】本题考查求椭圆的标准方程以及直线与椭圆位置关系中的定点问题,在处理直线与椭圆的位置关系的大题时,一般要利用根与系数的关系来求解,本题是一道中档题.18、(1)见解析;(2)【解析】(1)连接,证明,得到面,得到证明.(2)以,所在直线分别为,轴建立空间直角坐标系,为平面的法向量,平面的一个法向量为,计算夹角得到答案.【详解】(1)连接,在四边形中,平面,面,面,又面,又在直角三角形中,为的中点,面,面,.(2)以,所在直线分别为,轴建立空间直角坐标系,设为平面的法向量,令,则,同理可得平面的一个法向量为.设向量与的所成的角为,由图形知,二面角为锐二面角,所以余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.19、(1)见解析(2)【解析】(1)通过勾股定理得出,又,进而可得平面,则可得到,问题得证;(2)如图,以为原点,所在直线分别为轴,轴,轴,求出平面的法向量和平面的法向量,利用空间向量的夹角公式可得答案.【详解】(1)因为平面,所以, 又因为,所以,因此,所以, 因此平面,所以,从而,又四边形为平行四边形,则四边形为矩形;(2)如图,以为原点,所在直线分别为轴,轴,轴,所以,平面的法向量,设平面的法向量, 由,由,令,即, 所以,所以,所求二面角的余弦值是.【点睛】本题考查空间垂直关系的证明,考查向量法求二面角的大小,考查学生计算能力,是中档题.20、【解析】先令,根据题中条件得到,求解,即可得出结果.【详解】因为关于的方程的两根都大于2,令所以有,解得,所以.【点睛】本题主要考查一元二次方程根的分布问题,熟记二次函数的特征即可,属于常考题型.21、(1)(2)证明见解析【解析】(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点. 再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【详解】(1)根据题意,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,至少有一个零点. ,若,则,在上单调递增,有唯一零点.若令,得有两个极值点,.在上单调递增,在上单调递减,在上单调递增.极大值为.,又,在(0,16)上单调递增,有唯一零点.综上可知,对于任意,有且仅有一个零点.【点睛】本题考查导数的几何意义的运用、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意零点存在定理的运用.22、(1)证明见详解;(2)【解析】(1)求出函数的导函数,由在处取得极值1,可得且.解出,构造函数,分析其单调性,结合,即可得到的范围,命题得证;(2)由分离参数,得到恒成立,构造函数,求导函数,再构造函数,进行二次求导.由知,则在上单调递增.根据零点存在定理可知有唯一零点,且.由此判断出时,单调递减,时,单调递增,则,即.由得,再次构造函数,求导分析单调性,从而得,即,最终求得,则.【详解】解:(1)由题知,函数在,处取得极值1,且,令,则为增函数,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,则令,则,,在上单调递增,且,有唯一零点,且,当时,单调递减;当时,单调递增.,由整理得,令,则方程等价于而在上恒大于零,在上单调递增,.,实数的取值范围为.【点睛】本题考查了函数的极值,利用导函数判断函数的单调性,函数的零点存在定理,证明不等式,解决不等式恒成立问题.其中多次构造函数,是解题的关键,属于综合性很强的难题.