欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    江苏省镇江市丹徒高级中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc

    • 资源ID:88307775       资源大小:2.63MB        全文页数:21页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    江苏省镇江市丹徒高级中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc

    2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前项和为,若,则数列的公差为( )ABCD2某几何体的三视图如图所示,则该几何体中的最长棱长为( )ABCD3已知,则,不可能满足的关系是()ABCD4直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()ABCD5若实数、满足,则的最小值是( )ABCD6在的展开式中,含的项的系数是( )A74B121CD7双曲线的离心率为,则其渐近线方程为ABCD8已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则( )ABCD9下列命题中,真命题的个数为( )命题“若,则”的否命题;命题“若,则或”;命题“若,则直线与直线平行”的逆命题.A0B1C2D310将函数向左平移个单位,得到的图象,则满足( )A图象关于点对称,在区间上为增函数B函数最大值为2,图象关于点对称C图象关于直线对称,在上的最小值为1D最小正周期为,在有两个根11已知复数是纯虚数,其中是实数,则等于( )ABCD12一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A16B12C8D6二、填空题:本题共4小题,每小题5分,共20分。13已知为等比数列,是它的前项和.若,且与的等差中项为,则_.14记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.15随着国力的发展,人们的生活水平越来越好,我国的人均身高较新中国成立初期有大幅提高.为了掌握学生的体质与健康现状,合理制定学校体育卫生工作发展规划,某市进行了一次全市高中男生身高统计调查,数据显示全市30000名高中男生的身高(单位:)服从正态分布,且,那么该市身高高于的高中男生人数大约为_.16已知数列为正项等比数列,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.图:设备改造前样本的频率分布直方图表:设备改造后样本的频率分布表质量指标值频数2184814162(1)求图中实数的值;(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.18(12分)已知函数,.(1)若曲线在点处的切线方程为,求,;(2)当时,求实数的取值范围.19(12分)已知,其中(1)当时,设函数,求函数的极值(2)若函数在区间上递增,求的取值范围;(3)证明:20(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.21(12分)在中,设、分别为角、的对边,记的面积为,且(1)求角的大小;(2)若,求的值22(10分)如图所示,三棱柱中,平面,点,分别在线段,上,且,是线段的中点.()求证:平面;()若,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据等差数列公式直接计算得到答案.【详解】依题意,故,故,故,故选:D【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.2、C【解析】根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,过S作,连接BD ,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC 平面ABC,过S作,连接BD,则 ,所以 , ,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.3、C【解析】根据即可得出,根据,即可判断出结果【详解】;,;,故正确;,故C错误;,故D正确故C【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题4、A【解析】由直线过椭圆的左焦点,得到左焦点为,且,再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解.【详解】由题意,直线经过椭圆的左焦点,令,解得,所以,即椭圆的左焦点为,且 直线交轴于,所以,因为,所以,所以,又由点在椭圆上,得 由,可得,解得,所以,所以椭圆的离心率为.故选A.【点睛】本题考查了椭圆的几何性质离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:求出 ,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围)5、D【解析】根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题6、D【解析】根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,7、A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.8、D【解析】根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望方差的求法,结合了概率二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.9、C【解析】否命题与逆命题是等价命题,写出的逆命题,举反例排除;原命题与逆否命题是等价命题,写出的逆否命题后,利用指数函数单调性验证正确;写出的逆命题判,利用两直线平行的条件容易判断正确.【详解】的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;的逆否命题为“若且,则”,该命题为真命题,故为真命题;的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;判定“若,则”是假命题,只需举一反例即可10、C【解析】由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.11、A【解析】对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】 因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.12、B【解析】根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,由于与的等差中项为,则,则,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.14、【解析】试题分析:显然,又,当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是考点:不等式、简单线性规划.15、3000【解析】根据正态曲线的对称性求出,进而可求出身高高于的高中男生人数.【详解】解:全市30000名高中男生的身高(单位:)服从正态分布,且,则,该市身高高于的高中男生人数大约为.故答案为:.【点睛】本题考查正态曲线的对称性的应用,是基础题.16、27【解析】利用等比数列的性质求得,结合其下标和性质和均值不等式即可容易求得.【详解】由等比数列的性质可知,则,.当且仅当时取得最小值.故答案为:.【点睛】本题考查等比数列的下标和性质,涉及均值不等式求和的最小值,属综合基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析【解析】(1)由频率分布直方图中所有频率(小矩形面积)之和为1可计算出值;(2)由频数分布表知一等品、二等品、三等品的概率分别为.,选2件产品,支付的费用的所有取值为240,300,360,420,480,由相互独立事件的概率公式分别计算出概率,得概率分布列,由公式计算出期望【详解】解:(1)据题意,得所以(2)据表1分析知,从所有产品中随机抽一件是一等品、二等品、三等品的概率分别为.随机变量的所有取值为240,300,360,420,480.随机变量的分布列为240300360420480所以(元)【点睛】本题考查频率分布直方图,频数分布表,考查随机变量的概率分布列和数学期望,解题时掌握性质:频率分布直方图中所有频率和为1本题考查学生的数据处理能力,属于中档题18、(1);(2)【解析】(1)对函数求导,运用可求得的值,再由在直线上,可求得的值;(2)由已知可得恒成立,构造函数,对函数求导,讨论和0的大小关系,结合单调性求出最大值即可求得的范围.【详解】(1)由题得,因为在点与相切所以,(2)由得,令,只需,设(),当时,在时为增函数,所以,舍;当时,开口向上,对称轴为,所以在时为增函数,所以,舍;当时,二次函数开口向下,且,所以在时有一个零点,在时,在时,当即时,在小于零,所以在时为减函数,所以,符合题意;当即时,在大于零,所以在时为增函数,所以,舍.综上所述:实数的取值范围为【点睛】本题考查函数的导数,利用导数求函数的单调区间及函数的最小值,属于中档题处理函数单调性问题时,注意利用导函数的正负,特别是已知单调性问题,转化为函数导数恒不小于零,或恒小于零,再分离参数求解,求函数最值时分析好单调性再求极值,从而求出函数最值19、(1)极大值,无极小值;(2)(3)见解析【解析】(1)先求导,根据导数和函数极值的关系即可求出;(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;(3)取得到,取,可得,累加和根据对数的运算性和放缩法即可证明.【详解】解:(1)当时,设函数,则令,解得当时,当时,所以在上单调递增,在上单调递减所以当时,函数取得极大值,即极大值为,无极小值;(2)因为,所以,因为在区间上递增,所以在上恒成立,所以在区间上恒成立当时,在区间上恒成立,当时,设,则在区间上恒成立所以在单调递增,则,所以,即综上所述(3)由(2)可知当时,函数在区间上递增,所以,即,取,则所以所以【点睛】此题考查了参数的取值范围以及恒成立的问题,以及不等式的证明,构造函数是关键,属于较难题.20、(1)或;(2)见解析【解析】(1)根据,利用零点分段法解不等式,或作出函数的图像,利用函数的图像解不等式;(2)由(1)作出的函数图像求出的最小值为,可知,代入中,然后给等式两边同乘以,再将写成后,化简变形,再用均值不等式可证明.【详解】(1)解法一:1°时,即,解得;2°时,即,解得;3°时,即,解得.综上可得,不等式的解集为或.解法二:由作出图象如下:由图象可得不等式的解集为或.(2)由所以在上单调递减,在上单调递增,所以,正实数满足,则,即,(当且仅当即时取等号)故,得证.【点睛】此题考查了绝对值不等式的解法,绝对值不等式的性质和均值不等式的运用,考查了分类讨论思想和转化思想,属于中档题.21、(1);(2)【解析】(1)由三角形面积公式,平面向量数量积的运算可得,结合范围,可求,进而可求的值(2)利用同角三角函数基本关系式可求,利用两角和的正弦函数公式可求的值,由正弦定理可求得的值【详解】解:(1)由,得,因为,所以,可得:(2)中,所以.所以:,由正弦定理,得,解得,【点睛】本题主要考查了三角形面积公式,平面向量数量积的运算,同角三角函数基本关系式,两角和的正弦函数公式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题22、()证明见详解;().【解析】()取中点为,根据几何关系,求证四边形为平行四边形,即可由线线平行推证线面平行;()以为坐标原点,建立空间直角坐标系,求得直线的方向向量和平面的法向量,即可求得线面角的正弦值.【详解】()取的中点,连接,.如下图所示:因为,分别是线段和的中点,所以是梯形的中位线,所以.又,所以.因为,所以四边形为平行四边形,所以.所以,.所以四边形为平行四边形,所以.又平面,平面,所以平面.()因为,且平面,故可以为原点,的方向为轴正方向建立如图所示的空间直角坐标系,如下图所示:不妨设,则,所以,.所以,.设平面的法向量为,则所以可取.设直线与平面所成的角为,则.故可得直线与平面所成的角的正弦值为.【点睛】本题考查由线线平行推证线面平行,以及用向量法求解线面角,属综合中档题.

    注意事项

    本文(江苏省镇江市丹徒高级中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开